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Abstract: The creeping sinusoidal flow of non-Newtonian couple stress fluids in a two-dimensional porous medium 

channel with deformable walls, is investigated as a model of peristaltic physiological gastric transport. A mathematical 
model is developed which is also applicable to hemodynamics of diseased arteries. The assumptions of long wavelength 
and low Reynolds number approximation are employed for creeping (viscous-dominated) flow. Solutions for axial 

velocity, volumetric flow rate, pressure gradient and stream function are obtained. The influence of couple stress 
rheological parameter and permeability parameter on velocity profile, pressure gradient and stream lines patterns are 
computed with the aid of Mathematica Software.  
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1. INTRODUCTION 

Peristaltic flow arises in numerous physiological 

systems and constitutes an example of fluid-structure 

interaction [1]. Associated with rhythmic transport and 

deformable conduits, peristaltic flows are generically 

transient in nature and propagate in deformable 

geometrical configurations. They frequently exhibit a 

sinusoidal creeping flow as exemplified by migration of 

gastric fluids (bolus) through the oesophagus and 

human stomach [2], motion of chyme through large and 

small intestines [3] etc. Classical mathematical 

modeling of peristaltic flows has been an active area of 

applied mathematics for over four decades. Pioneering 

studies in this regard include the creeping sinusoidal 

channel flow of Newtonian fluids in peristaltic transport 

as studied by Shapiro et al. [4], Fung et al. [5]. These 

analyses generally employ the long wave length 

approximation and some form of lubrication theory 

which allows the reduction of Navier-Stokes equations 

to Stokesian (creeping flow) equations, in which inertial 

terms are generally neglected. They also address 

either infinite conduits or finite length conduits but are 

nevertheless restricted to relatively simple geometries 

and Newtonian fluids. In recent years many theoretical 
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and computational approaches have been developed 

to simulate peristaltic fluid-structure interaction (FSI) 

problems and these have aimed to achieve either more 

sophisticated geometric modeling and/or simulate more 

physically accurate biological liquid properties. 

Interesting studies of geometric complex fluid structure 

interaction flows include Crosetto et al. [6] who studied 

aortic FSI and Buriev et al. [7] who investigated 

stenotic blood FSI problems numerically. Quite recently 

an interesting study has been communicated on 

peristaltic FSI by Yazdanpanh-Ardakani and 

Niroomand-Oscuii [8] simulated unsteady rheological 

axisymmetric peristaltic transport with a finite element 

code, ADINA. Aboelkassem and Staples [9] considered 

peristaltic biomimetic pumping flows in a complex 

network of insect trachea in the microscale flow regime. 

As elaborated earlier these recent simulations of 

peristalsis have been confined to Newtonian fluids or in 

the case of [10] to very elementary rheological models. 

The complex rheology of real biological fluids however 

requires more sophisticated mathematical models 

capable of capturing the non-Newtonian characteristics 

of these liquids, which are generally suspensions. In 

recent years, therefore, a diverse array of rheological 

models, have been implemented in peristaltic transport 

modeling. These include Maxwell fluids [11], Jeffreys 

fluids [12], Williamson fluids [13], Oldroyd-B fluids [14], 

Johnson-Segalman fluids [15], nanofluids [16], liquid 

crystal nematogens [17] and viscoplastic (Bingham) 
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yield stress fluids [18]. All these models involve a 

tremendous range of constitutive equations and mimick 

extensive features arising in actual rheological fluids. 

One particular model, the Stokes couple stress fluid 

[19] is a special sub-class of non-Newtonian fluids 

which allows for particle sizes to be taken into account. 

The classical Navier-Stokes (continuum) theory or 

generalized non-Newtonian models (viscoelastic, 

viscoplastic etc.) do not simulate particle size effects. 

To overcome this, a micro-continuum theory was 

presented by Stokes [20] which can capture particle 

size effects. The Stokes micro-continuum theory is a 

generalization of the classical theory of fluids allowing 

for polar effects such as the presence of couple 

stresses, body couples, and an anti-symmetric stress 

tensor. In this fluid model, the couple stress effects are 

considered as a consequence of the action of a 

deforming body on its neighborhood. The Stokes model 

has proven very popular in analyzing biological flows 

including lubrication (tribological) systems [21], 

microcirculation hemodynamics [22-28], centrifugal 

biomedical separation devices [29, 30]. Relatively few 

studies of peristaltic flows of couple stress fluids have 

been communicated. An early analysis has been 

presented by Srivastava [31]. Mekheimer [32] has also 

examined peristaltic flow of a couple stress fluids 

including magnetic induction effects.  

In numerous gastric and circulation flows, debris 

may be deposited in biological conduits (arteries, 

intestines, veins, capillaries) and this is a manifestation 

of diseased systems. The normally homogenous flow 

regime therefore becomes a porous medium and can 

be simulated using models which evaluate the 

supplementary drag forces exerted on the flow due to 

the presence of solid matrix fibers. These fibers may be 

bacterial clumps, undigested components of food, 

clusters of fatty deposits in arteries etc. As such the 

viscosity of such regimes will also be affected [33, 34]. 

Small intestine partial blockages effectively impede the 

transit of oncoming chyme. The regime can be 

simulated via a porous medium drag force model, as 

emphasized by Khaled and Vafai [35]. An important 

disease which shows impedance features is 

Hirschsprung's disease - a congenital disorder in which 

poor motility which induces obstruction of both the 

small and large intestines. In partial obstructions, some 

liquid chyme contents are able to pass through the 

obstruction zones, and this effectively can be modelled 

as a porous medium problem. The presence of 

infections (e.g. ulcers) leading to material deposition in 

the small intestine decelerates the propagation of 

waves and inhibits chyme migration. Effectively the 

purely fluid regime (healthy intestine) is transformed to 

a porous medium regime (diseased intestine). In 

hemodynamics, porous media drag force models are 

also a very useful tool for simulating impedance to 

circulation. Recently several simulations of couple 

stress biophysical peristaltic flows in porous media 

have been communicated, including the hemodynamic 

study by Tripathi [36] which includes hydrodynamic wall 

slip effects, and the gastric model examined by Tripathi 

and Bég [37]. Tripathi [38] has further considered 

collective wall slip and magnetic body force effects in 

couple stress peristaltic flow through porous media, 

showing analytically that pressure is suppressed with 

increasing magnitude of couple-stress parameter, 

permeability parameter and wall slip parameter, 

whereas it is elevated with stronger transverse 

magnetic field and amplitude ratio effects. 

In the present study we consider for the first time, 

the peristaltic transport of non-Newtonian couple stress 

fluids in a two-dimensional sparse porous medium 

channel with deformable walls, under long wavelength 

and low Reynolds number approximations, valid for 

creeping (viscous-dominated) flow. Analytical solutions 

are derived for axial velocity, volumetric flow rate, 

pressure gradient and stream function. We elaborate 

on the effects of the couple stress rheological 

parameter and permeability (porous medium hydraulic 

conductivity) parameter on flow characteristics and also 

present visualizations of the stream lines patterns. The 

study is aimed at further investigating the 

hemodynamic transport in diseased gastric systems 

with more realistic rheological formulations. Weak 

blockages are simulated using high permeability 

values. Mathematica software is employed to visualize 

peristaltic wave patterns at various permeabilities and 

couple stress parameter values.  

2. COUPLE STRESS RHEOLOGICAL EQUATIONS 
AND SINUSOIDAL FLOW MODEL  

In this study we adopt the Stokesian couple stress 

rheological model [20]. Couple stresses are the 

generated based on the assumption that the 

mechanical action of one part of a body on another 

across a surface is Equivalent to a force and moment 

distribution. In the classical non-polar theory (Navier-

Stokes viscous fluids), moment distributions are not 

considered and the mechanical action is assumed to 

be Equivalent to a force distribution only as elucidated 

by Cowin [39]. The state of stress is measured by a 

stress tensor ij and a couple stress tensor, Mij. The 



54     Journal of Advanced Biotechnology and Bioengineering, 2013, Vol. 1, No. 2 Tripathi et al. 

tensorial form of the field Equations for Stokes couple 

stress fluids may be shown to take the form:  

Mass Conservation (Continuity) 

   
+ v

i
= 0,             (1) 

Cauchy’s First Law of Motion 

  
a

i
= T

ji, j
+ f

i
,           (2) 

Cauchy’s Second Law of Motion 

  
M

ji, j
+ l

i
+ e

ijk
T

jk
= 0,            (3)  

Here  denotes the density of the couple stress 

fluid, vi the velocity components, ai are the components 

of the acceleration, Tij is the second order stress 

tensor, Mij the second order couple stress tensor, fi the 

body force per unit volume, li the body moment per unit 

volume and eijk the third order alternating pseudo 

tensor, which is equal to +1 or 1 if (i, j,k) is an (even or 

odd) permutation of (1,2,3), and vanishes if two or 

more of the indices i, j, k are equal. For incompressible 

couple stress fluids and if the body force and body 

moment are absent, the equations of motion can be 

shown to reduce, in vectorial notation, to: 

  
a

i
= P + (

ij
) μ

1

4
v .          (4)  

Here ij is the stress tensor in the nonpolar classical 

theory [39] and μ
1
 is the couple stress coefficient. The 

final term in Eqn. (4) represents the couple stresses. 
This constitutive Equation is utilized in due course.  

The walls of channel are simulated as a sinusoidal 

wave propagating and the appropriate geometrical 

formulation, as depicted visually in Figure 1, is defined 

as follows: 

h = a + bsin
2

( ct ) ,          (5) 

where  a , is the half width of the channel,  b  is 

amplitude,  is wavelength, c is the wave velocity and 

  t is time. 

3. TWO-DIMENSIONAL COUPLE STRESS POROUS 
MEDIUM FLOW MODEL  

Neglecting the body forces and the body couples, 
the two-dimensional transient, continuity equation and 
equations of motion for couple stress fluid flow through 
porous medium, employing the relevant terms from 
Eqn. (4), take the form:  

   

u
+
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Figure 1: Geometry of sinusoidal channel flow regime. 
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where ,u,v, , p,μ,μ
1
, K  are the couple stress fluid 

density, axial velocity, transverse velocity, transverse 
coordinate, pressure, dynamic viscosity, constant 
coefficient associated with couple stress and the 
permeability parameter, respectively, and the following 
Laplacian definition holds: 

  

2

2

2
+

2

2
,  

4
=

2 2 .         (9) 

4. NON-DIMENSIONAL TRANSFORMATION AND 
ANALYTICAL SOLUTIONS 

Introducing the following dimensionless parameters: 
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a
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μ
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,

   (10) 

where , , ,Re,  are the wave number, ratio of half 

width of channels, amplitude ratio, Reynolds number 
and couple stress parameter respectively and applying 
the long wavelength and low Reynolds number 
approximation, in the framework of lubrication theory, in 
Eqns. (6)-(9), we obtain:  

  

u
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= 0 ,          (11) 
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p
= 0 .          (13) 

The boundary conditions are: 

no slip condition, 
  
u = 0 at = h , regularity condition, 

  

u
= 0 at = 0 ,         (14)  

vanishing of couple stresses, 

  

2
u

2
= 0 at = h , 

  

3
u

3
= 0 at = 0 .         (15) 

Solution of Eqn. (12), with boundary conditions (14) 
and (15), we arrive at: 
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where 
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The volume flow rate is given by 

  

Q = ud
0

h

.          (19) 

Implementing Eqn. (16) in Eqn. (19) yields: 
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2

2 m
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2

m
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1
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h) h . (20)  

The transformations between a wave frame (
   
X ,Y ) 

moving with velocity c and the fixed frame 
  
( , ) are 

defined thus:  

   
X = ct , Y = , U =u c, V = v ,       (21) 

where (U ,V )  and 
   
(u,v)  are the velocity components in 

the wave and fixed frame respectively. 

The volumetric flow rate in fixed frame is given by: 

Q = ud
0

h

= (U +1)dY
0

h

,         (22) 

which, on integration, 

 
Q = q + h .          (23) 

Averaging volumetric flow rate along one time 
period, gives: 

Q = Qdt
0

1

.          (24) 

From Eqn. (23) & Eqn. (24) we have: 

  
Q = Q +1 h .          (25) 
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From Eqn. (20) and Eqn. (25), the pressure gradient 
is obtained as: 

  

p
=

Q 1+ h

K f ( )
,          (26) 

where 
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1
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2 m
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From Eqn. (16) and Eqn. (26), and using the 
transformations defined in Eqn. (21), the stream 

function in the wave frame (

 

U = and 

 

V = ) 

assumes the form: 
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2
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The results reduce to the classical Newtonian 
solutions obtained by Shapiro et al. [4] when  0  

(vanishing couple stress effect) and K  (infinite 
permeability i.e. purely fluid regime). 

5. NUMERICAL COMPUTATIONS AND DISCUSSION 

Computational results have been generated using 
Mathematica software for the influence of permeability 

parameter (K) and couple stress parameter ( ), on flow 

characteristics, as illustrated in Figures 2-4. 
Mathematica is a leading symbolic “computational 
library” [40] which has emerged as a very powerful 
numerical computational tool, with systemwide 
technology to ensure reliability, ease of use, and 
performance. Mathematica computation directly 
permits seamless workflow, unique symbolic language, 
and advanced code editing environment, achieving fast 
turnaround on small projects and record times on large 
systems. Mathematica's 2D and 3D graphics are 
represented using symbolic primitives, and can 
therefore be generated and manipulated using all 
standard Mathematica functions and seamlessly 
integrated with text, math, or tables. With region- and 
volume-oriented implicit plotting, automated singularity 
analysis, arbitrary plotting regions and mesh overlays, 
and more, Mathematica enables the immediate 
creation of highly aesthetic and technically correct 2D 
and 3D visualizations. A comprehensive set of function 

 

 

Figure 2: Velocity Profile (Axial velocity vs. Transverse displacement) at 

  

= 1, = 0.5, t = 1.0,
p
= 1  for different values of (a) 

  
K = 1,2,3,4  (b) 

 
= 3,4,5,6 . 
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Figure 3: Pressure Gradient vs. Axial displacement at = 0.3, Q = 1.0  for different values of (a) 
  
K = 1,2,3,4  (b) 

 
= 3,4,5,6 . 

visualization types are built in, including polar and 
spherical plots, contour and density plots, parametric 
line and surface plots, and vector and stream plots. 
Mathematica provides an enormous set of 
mathematical, scientific, engineering (and financial) 
functions which is easily accessible. However, 
Mathematica functions work for any size or precision of 
number, compute with symbols, are easily represented 
graphically, automatically switch algorithms to get the 
best answer, and even check and adjust the accuracy 
of their own results. This sophistication means great 
dependability and confidence in solutions, especially 
for engineering-type mathematical calculations. 
Mathematica's symbolic architecture allows both 
equations and their solutions to be conveniently given 
in symbolic form, and immediately integrated into 
computations and visualizations. Automatically 
selecting between hundreds of powerful and in many 
cases original algorithms, Mathematica provides both 
numerical and symbolic solving of differential equations 
(ODEs, PDEs etc). With equations conveniently 

specified symbolically, Mathematica uses both its rich 
set of special functions and its unique symbolic 
interpolating functions to represent solutions in forms 
that can immediately be manipulated or visualized [40]. 
All the results for axial velocity (Eqn.16), volumetric 
flow rate (Eqn.21), pressure gradient (Eqn.26) and 
stream function (Eqn.28) have been obtained in the 
form of two arbitrary functions, 

  

m
1
=

2
+

2
4N

2
 and

  

m
2

=

2 2
4N

2
, 

which depend on couple stress parameter ( ) and 

permeability parameter ( K ). All the computations have 

been performed for real values of 
1

m  and 
2

m  i.e. 

2
> 4 / K .  

Figure 2a & b depict the effects of couple stress 
parameter ( ) and permeability parameter ( K ) on 

velocity profile (axial velocity vs. transvers 
displacement) at a fixed value of axial displacement, 
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(Figure 4). Continued. 

 

Figure 4: Streamlines in the wave frame at
  

Q = 0.6, = 0.6 for 

(a) 
  
K = 1, = 3 ,  

(b) 
  
K = 1, = 3.25 ,  

(c) 
  
K = 1, = 3.5 ,  

(d) 
  
K = 1, = 4 , 

(e) 
  
K = 1.25, = 3 , 

(f) 
  
K = 1.5, = 3 , 

(g) 
  
K = 2, = 3 . 

amplitude ratio, time, and pressure gradient (i.e., 

  

= 1, = 0.5, t = 1.0,
p
= 1 ). The profiles are parabolic 

which correlate well with the classical Newtonian 
viscous creeping flow solutions of Shapiro et al. [4]. 
Figure 2a depicts the effect of couple stress parameter 
( ) on velocity profile and it is found that axial velocity 

in magnitude increases with increase the magnitude of 
couple stress parameter.  

The effect of permeability parameter ( K ) on 
velocity profile is similar to that of the couple stress 
parameter. An increase in K decreases proportionally 
the Darcian linear drag force appearing in the axial 

momentum conservation Eqn. (12), viz, 
 

u

K
. 

Effectively as the concentration of debris decreases in 
the bio-conduit, progressively less and less solid 
particles are present. The permeability of the regime is 
therefore increased and simultaneously the impedance 
force acting on the percolating couple stress fluid is 
decreased. This serves to accelerate the axial 
peristaltic creeping flow magnitudes. The negative 
signs indicate that the flow actually is directed in the 
opposite direction to the propagation of the peristaltic 

wave i.e. in the negative -direction. The increase in 

the couple stress parameter also induces a significant 

decrease in the couple stress term, 

  

1

2

4
u

4
. This 

term also acts like a supplementary drag force. 
Therefore the inverse square proportionality between 
the entire couple stress term and the couple stress 

coefficient, , clearly implies that larger  values will 

lead to massively reduced magnitudes in 1/
2
, and this 

will effectively accelerate the axial flow. It is interesting 
to note however that the order of magnitude of axial 
velocity is similar for both the permeability effect and 
the couple stress effect. The enhancement in flow 
acceleration (albeit in the negative axial direction) has 
also been computed with high couple stress parameter 
effects by numerous other researchers including Sinha 
and Singh [22], Zueco and Bég [26], Srivastava [28] 
and Mekheimer [32].  

Figure 3a & b show the relationship between 
pressure gradient and axial displacement for a 
prescribed volumetric flow rate and amplitude ratio 

(i.e.,
  

= 0.3, Q = 1.0 ) with different values of couple 

stress parameter and permeability parameter. The 
curves exhibit periodicity with period of 0.5 (axial 
displacement) and are strongly nonlinear. Figure 3a 
shows that the pressure gradient is markedly elevated 
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with increasing magnitude of couple stress parameter. 
Increasing rheological effects therefore require greater 
pressure for propagation of the peristaltic wave. A 
similar pattern is observed in Figure 3b for the effect of 
permeability parameter on pressure gradient. In both 
cases, peak and trough amplitudes are enhanced with 
increasing couple stress or permeability effects. 

Figure 4a-g finally illustrate the stream line patters 
for the sinusoidal wavy channel flow for different values 
of couple stress parameter and permeability parameter, 
at fixed volumetric flow rate and amplitude ratio 

(i.e.,
  

Q = 0.6, = 0.6 ). Figure 4a-g show that the stream 

line patterns are clearly of a sinusoidal wavy nature. 
From Figure 4a-d, it is shown that the distance 
between two successive stream lines reduces with 
increasing the magnitude of couple stress parameter. 
From Figure 4e-g, similar effects for the permeability 
parameter on stream line pattern are observed. Bolus 
magnitude is clearly decreased with increasing couple 
stress parameter and permeability effect. The 
deviations from Newtonian purely fluid flow are 
considerable and indicate that particle effects in real 
biological flows exert a non-trivial influence on 
peristaltic flows. 

6. CONCLUSIONS 

The two dimensional sinusoidal wavy motion of 

couple stress fluids through a deformable channel 

containing a sparsely packed porous medium has been 

analyzed. Mathematica visualizations of the analytical 

solutions for the resulting boundary value problem have 

shown that: 

 Axial velocity magnitude increases with a rise in 

magnitude of couple stress parameter and also 

with permeability parameter ( K ). 

 Pressure gradient is elevated with an increase in 

both couple stress and permeability parameters.  

 Successive stream lines narrow with increasing 

magnitude of couple stress parameter and also 

with permeability parameter.  

 Bolus size is depressed with increasing couple 

stress or permeability effects. 

The present computations constitute a first step in 

simulating peristaltic flow of non-Newtonian fluids in 

distensible channels. Future investigations will employ 

commercial CFD codes to increase geometrical 

sophistication and peristaltic flow in curved geometries 

[41] (“non-Newtonian Dean flows”) and will be 

communicated imminently. 
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