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Abstract: Limiting the quantitative characterization of ambulatory mobility to only the two-dimensional sagittal plane 
through the investigation of key kinematic parameters, may still inform scientists and bioengineers of critical elements of 
joint locomotion. This paper presents the initial validation of a deterministic biomechanical gait model that was derived 

from an inverse kinematic analysis of three-dimensional upper extremity movement. Algebraic methods were applied to 
generate shoulder flexion and extension angles during a single gait cycle during normal walking. The direct kinematic 
measurements from a motion capture system were analyzed and compared to the predicted measurements from the 

algebraic model for eight healthy, human subjects. The predicted results over all subjects varied from the actual joint 
angle measurements with a nominal amount of mean error (23%), while correlations were quite strong (mean R

2
 = 0.97). 

These findings indicate the potential value of deterministic modeling with algebraic techniques as an alternative to 

existing methods. 
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INTRODUCTION 

The medical community’s interest in gait is often to 

classify the components of gait for the treatment of 

pathologically abnormal patients. Data collection of 

upper extremity movements in the gait cycle for the 

purpose of developing diagnostic methodologies may 

present problems for researchers. Upper extremity 

flexion and extension have a high degree of complexity 

for the shoulder in the gait cycle. Problems include 

poor marker measurements due to skin movement, 

spherical joint mobility at the shoulder that influences 

non-planar arm swing during gait, and occlusion of 

particular body segments [1-4]. However, data 

collection and analysis of the shoulder has improved 

through the use of medical imaging equipment, 

mathematical modeling, and sensor networks, leading 

to clinical advances, particularly for athletes and injured 

persons [5-8]. Although many studies emphasize 

medical diagnostics for abnormal gait characteristic  
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determinations [9,10], the consequences of balance, 

center of mass, velocity, etc., also provide insight into 

more sophisticated data collection strategies for spatio-

temporal pattern analysis [11,12]. A review of perturbed 

gait for the purpose of medical diagnostics called for 

the development of new clinical assessment methods 

to help reveal the influence of diseases (e.g., 

Parkinson’s) on the control of postural tasks [13]. The 

assumption was that important parametric contributors 

could be identified that would be characteristic of a 

disease. The research appeared to indicate that 

various spatial tasks caused sagittal plane effects that 

could be correlated. The above, then, call for the use of 

alternative techniques to further enhance existing 

studies in pattern analysis in the sagittal plane. These 

approaches would also address skin marker 

challenges, joint mobility influences on arm swing, 

segment occlusion, and measurement error of upper 

extremity movements for the medical community. 

Mathematical modeling of the shoulder typically 

tracks arm swing motion in three dimensions (3D). 

However, limiting the characterization of mobility to the 

sagittal plane through the application of key parameters 

still informs scientists and bioengineers of key 

elements of joint locomotion. A two-dimensional (2D) 

model of this nature would address joint mobility of the 



2     Journal of Advanced Biotechnology and Bioengineering, 2015, Vol. 3, No. 1 Kendricks et al. 

shoulder as well as segment occlusions. Importing gait 

data into the model from improved data collection 

techniques would address position marker variability 

through skin movement and measurement errors. 

Tracking motion through mathematical modeling, then, 

can provide a better understanding of shoulder joint 

kinematics while avoiding problems that have risen in 

previous studies [3,14-16], providing the field with 

alternative techniques for comparing normal versus 

abnormal shoulder flexion and extension.  

Several kinematic and kinetic modeling techniques 

exist. Of these, inverse kinematic (IK) analysis has 

emerged as a common technique to model human 

motion [17,18]. However, this approach rarely 

incorporates a deterministic model. In general, most IK 

techniques apply probabilistic or optimization 

approaches [19-23]. While these approaches have 

broadened the field of biomechanics, further 

investigation is needed in deterministic modeling. The 

authors will illustrate the usefulness of one model in 

particular as introduced previously [24].  

There are two types of kinematic problems. The 

forward kinematic problem is the computation of the 

position and orientation of a jointed flexible object in 2D 

or 3D space, and the IK problem is the process of 

determining all combinations of a jointed flexible 

objects in order to achieve a desired position and 

orientation in space [25]. In robotics, the IK problem is 

most widely used to determine object capability, 

efficiency, and accuracy for various robot manipulators. 

Previous efforts have successfully applied such 

research in robotics to human locomotion [26,27]. 

Investigators developed an optimization method that 

modeled a planar, kinematic chain with three degrees 

of freedom (DOF) for the upper extremities in the 

sagittal plane [27]. Results estimated body segment 

parameters (masses, center of gravity coordinates, 

joint angle measurements, etc.). Others have analyzed 

energy consumption during gait and used an 

optimization method based on a planar, five-link, open-

chain robot manipulator to develop an algorithm to 

predict joint kinematics of the swinging limb [26]. These 

results supported other scientific studies that have 

concluded that gait is energy efficient. Previously, we 

contributed to this body of work by developing an 

improved methodology using a 2D model based upon 

algebraic techniques to simulate the movements of a 

three DOF planar human arm [24]. As an initial 

validation of this 2D model, we have applied the 

deterministic approach to original motion capture data 

collected from the upper extremities of human subjects. 

This paper will present the results of applying this 

model to shoulder flexion and extension during the gait 

cycle. 

MATERIALS AND METHODS 

Full body, 3D segment motions were gathered from 

healthy, male human subjects walking at normal 

speeds (n = 8, age range = 20 to 26 years, body mass 

index = 20.1 to 28.8). Anatomic data as well as passive 

optical motion capture data (Figure 1) were collected at 

60 frames per second using a 6-camera system 

(VICON Las Angeles, CA). Relative joint locations and 

rotation angles were defined in a manner consistent 

with published standards [28] and marker trajectories 

were filtered using a 2
nd

 order Butterworth filter with a 

low-pass cutoff frequency of 6 Hz. In order to apply the 

2D IK model, a dynamic system was created so that 

the shoulder and elbow centers were represented in 

the torso’s sagittal plane with the shoulder joint center 

position constituting the 2D origin of motion [26]. 

Finally, all position and rotation data were normalized 

to a percentage of the gait cycle. During the first half of 

the cycle the shoulder is in flexion, while the shoulder is 

in extension during the latter half. All data post-

processing was conducted using commercial software 

(MATLAB v7.5.0, Mathworks, Inc., Natick, MA; Excel, 

Microsoft Corp., Bellevue, WA). 

 

Figure 1: Representative three-dimensional motion capture 
image of a subject sampled from body-surface markers 
during a typical gait cycle. 
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The experiment allowed the test subjects to 

complete several gait cycles in a closed laboratory 

environment. The test subjects were given several 

strides (typically 3 to 5) to develop a normal gait 

pattern, upon which two gait cycles were recorded. The 

data were processed through the 2D geometric model 

(a kinematic chain of joint-link pairs) to determine the 

joint angle measurements of the elbow ( 2) and 

shoulder ( 1) [24]. The kinematic chain was projected 

onto an XY-Coordinate plane (sagittal plane) with the 

shoulder joint centered at the origin and the position of 

the wrist denoted as (x = a, y = b). Given the length of 

the upper arm, denoted L1 and the forearm, denoted L2, 

a system P, of four, non-linear polynomial equations 

was derived with four unknowns, cos i and sin i where 

i =1,2, such that:  

P =

L2 cos 1 cos 2 sin 1 sin 2( ) + L1 cos 1 a

L2 cos 1 sin 2 cos 2 sin 1( ) + L1 sin 1 b

cos2 1 + sin
2

1 1

cos2 2 + sin
2

2 1
 

To solve the system, an algebraic reduction 

algorithm (Buchburger’s Algorthim) was computed via 

an algebraic software system (Magma Computational 

Algebra System V2, Computational Algebra Group, 

University of Sydney, Australia), reducing the set of 

equations to a simplified basis set [29]. Using 

lexographical order, cos 2 > sin 2 > cos 1 > sin 1, the 

following basis was produced: 

G =

cos 2

a2 + b2 L1
2 L2

2

2L1L2

sin 2 +
a2 + b2

aL2
a2b + b3 +

b L1
2
+ L2

2( )
2aL1L2

cos 1 +
b

a
sin 1

a2 + b2 + L1
2 L2

2

2aL2

sin 1
2
+
a2b + b3 + b L1

2
+ L2

2( )
L1 a

2
+ b2( )

sin 1 +
a2 + b2( )

2
+ L1

2
+ L2

2( )
2

a2 L1
2
+ L2

2( ) + 2b2 L1
2 L2

2( )
4L1

2 a2 + b2( )

 

A linear algebraic approach of group G (Variety G) 

allowed for the manipulation of the given equations to 

determine the solutions for the four unknowns [30]. 

Further, the denominators of terms in each equation 

provided information for additional cases when L1, L2, a 

 0 and (a
2
 + b

2
)  0. Thus, given the planar position of 

the wrist during walking and the lengths of the upper 

arm and forearm as input, the 2D geometric model 

determined the flexion/extension angles of the elbow 

and shoulder throughout the gait cycle. 

During data collection, a single cycle of gait was 

divided into one hundred time increments ( t  0.3 s). 

The lengths of the upper arm and forearm (measured 

from joint center to joint center) and the position of the 

wrist were imported into the model through time. 

Inverse kinematic calculations predicted the flexion and 

extension angles of the shoulder for each of the time 

increments throughout the single gait cycle. These 

predicted results were then compared back to the 

measured joint angles produced directly from the 

motion analysis system software. Accuracy and 

correlation of the predictions were assessed by the root 

mean square (RMS) of the shoulder angle, the percent 

differences in the RMS (% ), and the coefficient of 

determination (R
2
), respectively. An F-test was also 

conducted to assess the two-tailed probability of 

whether the measured or predicted variances are not 

statistically different. 

RESULTS 

Overall, the predicted extension and flexion angles 

were similar to those measured (Figure 2). During the 

stance phase, the measured results increased on 

average until 50% of the gait cycle was completed, 

then decreased around toe-off and continued to 

decrease during the swing phase of the gait cycle. The 

predicted results closely matched those measured 

during the stance phase of the gait cycle. However, 

during the first 10% of the gait cycle, the predicted 

results varied on average by 3.66
o
. The predicted 

results also varied at toe-off and at some parts of the 

swing phase. In particular, the predicted results 

increased higher than those measured around toe-off 

by an average of 10.0
o
, this difference continued 

through the beginning of the swing phase. For 70 to 

95% of the gait cycle, the measured results 

progressed, resulting in an average difference from 

those predicted of 3.24
o
. Overall, the predicted results 

were closer to those measured for shoulder flexion, 

and varied for shoulder extension given the impact of 

toe-off and segment transition to and during the swing 

phase. Yet, the aggregate predicted results still follow 

the trends of the measured results.  

Variance in the above results was generally due to 

the projection of joint motion onto the 2D sagittal plane. 

During an individual’s gait cycle, the elbow bends 

slightly into a third dimension (medial-lateral 

orientation), not represented in the model. As a result, 

the perceived 2D total length of the arm (upper arm 

plus forearm) has a mean error of 7.8% through a 

single gait cycle (Table 1). Given the above, the RMS 

and %  as estimates of the accuracy of the prediction 

indicate consistent differences for the entire gait cycle 

(Table 2) as well as during the separate flexion an 
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extension positions (Table 3). In terms of precision, the 

correlation and variance testing indicate very consistent 

comparisons (Table 2). 

Table 2: Comparison of Measured Versus Predicted 
Shoulder Motion During One Complete Gait 
Cycle. Although the differences appear large, a 

high correlation (R
2
 > 0.9) and similar variances 

(F < 0.05) are generally indicated between the 
results of the motion capture data and the IK 
model 

RMS (
o
) Subject 

# 
Measured Predicted %  

R
2
 F- Test 

50 9.12 11.87 30.3 0.9644 0.0064 

51 10.67 12.64 18.5 0.9938 0.0694 

52 11.52 13.68 18.7 0.9951 0.0724 

53 10.09 13.01 28.9 0.9693 0.0509 

54 14.09 17.81 26.4 0.9263 0.0309 

56 9.40 11.82 25.7 0.9752 0.0430 

60 4.72 5.67 20.3 0.9927 0.0648 

62 8.35 7.07 -15.3 0.9691 0.3652 

DISCUSSION 

The results from this study demonstrated the useful 

albeit limited strength of the previously described 

model [24]. This model provides an alternate predictor 

of shoulder flexion, and requires further investigation to 

model shoulder extension in the sagittal plane of the 

gait cycle. To support future investigations, ongoing 

gait studies will develop and apply a 3D variation of the 

model through the use of motion capture and 

surveillance video. The ultimate goal is to provide an 

alternative analytical tool when characterizing normal 

and abnormal joint shoulder behaviors in the gait cycle.  

Given that arm-swing motion assists with stabilizing 

body motion in the gait cycle, this study can support 

existing research in the analysis of the relationship 

between arm-swing motion and the angular motion 

about the vertical moment at the foot [31]. Research 

has also shown that different frequencies of arm-swing 

oscillation can be used to identify walking patterns in 

the sagittal plane [32,33]. The model in this study can 

be applied to simulate arm swing motion to further 

analyze experiment data capturing upper extremity 

occlusion [34]. For pathological gait patients, this 

approach can also contribute to the call from the 

medical community for more assessment methods to 

assist with diagnostics of diseases influencing gait. 

Although the state-of-the-art in human motion 

analysis has moved into 3D kinematics, a validation of 

this deterministic model with 2D results is justified and 

comparable with the literature. Reducing complex 

 

Figure 2: Aggregate mean (+/- standard deviation, SD) of the 
measured and predicted shoulder angles for all eight subjects 
through a single gate cycle. Flexion and extension angles are 
associated with the first-half and last-half of the gait cycle, 
respectively. 

Table 1: Representative Anthropometric Error of the 

Upper Arm and Forearm (Subject 50) During a 
Gait Cycle 

Subject 50 Upper Arm Forearm 

Anatomic Lengths (mm)  

352.2 269.9 

Gait Cycle (%) Predicted Lengths (mm) 

1 310.4 271.2 

2 310.9 271.3 

3 311.3 271.4 

4 311.6 271.5 

5 311.8 271.6 

6 312.2 271.7 

7 312.6 271.7 

8 313.0 271.8 

9 313.3 271.9 

… … … 

97 313.8 270.4 

98 314.2 270.2 

99 314.7 270.0 

100 315.2 270.0 

Mean %  From 

Measured Limb Length -13.2% -0.8% 
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motion by projecting limb position into a single plane of 

rotation has been previously described for the hip and 

knee joints [35], the ankle [36], and the lower back [37]. 

The results here were similar in terms of precision with 

these previous works where body marker motion 

associated with skin displacement errors.  

As described in the results, the comparison 

between the measured and predicted shoulder angular 

positions indicates that the proposed model may be 

highly precise but minimally accurate. The limitations in 

this work are strongly linked with characterizing 3D 

motion within a single 2D plane. The shoulder is a joint 

with three DOFs of rotation [38]. Each projection onto 

the sagittal plane will lead to compounded errors 

throughout motion. However, with additional 3D 

analysis, it is felt that these 2D errors can eventually be 

minimized. 

This work represents an initial effort in validating a 

proposed deterministic IK model of human shoulder 

motion. The analytical approach described here will 

continue to be applied toward gathered data in an effort 

to therapeutically identify normal and abnormal motion. 

The implications of these and future findings will be 

used to enhance the clinical applications of motion 

analysis by providing refinements with which to 

improve diagnosis and guide therapy. 
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