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Abstract: Background noise poses a great challenge to the speech recognition capability of hearing-impaired patients 
fitted with hearing aid (HA) devices. In an HA system, a speech enhancement unit is generally employed to enhance the 
signal-to-noise ratio (SNR) of noisy speech in order to yield better speech understanding for HA users in noisy 

conditions. However, previous studies reported that a subsequent static amplification scheme, such as wide-dynamic-
range compression (WDRC), may deteriorate the enhanced speech and thus decrease the speech recognition 
capability. This work examines the performance of a recently proposed adaptive WDRC (AWDRC) amplification scheme 

when used in conjunction with a speech enhancement method in HA signal processing. Experimental results 
demonstrate that when integrated with the same speech enhancement method, AWDRC outperforms WDRC, in terms of 
long-term SNRs, at several typical hearing loss conditions. The results suggest that AWDRC can be a better choice than 

WDRC when combining with speech enhancement to improve speech recognition capabilities for HA users in noisy 
conditions. 
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1. INTRODUCTION 

Sensorineural hearing loss, which is the most 

common type of hearing impairment, introduces 

several deficits that need to be overcome in sound 

perception, such as decreased audibility, narrowed 

dynamic range, and degraded frequency and temporal 

resolutions [1]. Hearing aid (HA) devices are currently 

the most popular methods for improving the 

communication ability of hearing-impaired (HI) people. 

Since the last two decades, HAs have undergone a 

technological transformation in the sense of no longer 

processing sound in an analog way but digitally with an 

electronic processor. Digital signal processing has 

made possible many technological innovations for HAs, 

such as speech enhancement (or noise reduction) and 

amplification scheme, to enhance HA users’ abilities to 

listen, communicate, and participate more fully in daily 

activities. These two algorithms were designed to reach 

different goals: speech enhancement is to improve 

output SNR in noisy conditions while amplification 

scheme is to keep the output sound in the audibility 

and comfort range. In digital HA systems, speech 

enhancement and amplification scheme are both 

integrated and used jointly. 

Speech enhancement has been long utilized in the 

pre-processing stage in HAs to provide an improved  
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signal-to-noise ratio (SNR) [2] through HA signal 

processing. This is achieved by identifying segments 

where noise is particularly intense relative to speech, 

and applying less amplification to these segments than 

to other segments where the SNR level is large [3, 4]. 

On the other hand, amplification scheme is also an 

important signal processing unit in HAs, as it amplifies 

or limits the input sounds between the audible and 

comfortable listening levels (or hearing dynamic range) 

of HI patients. So far, the wide-dynamic-range 

compression (WDRC) scheme is the most common 

method used to amplify the sound in HAs [5]. The 

design of WDRC is similar to human outer hair cells in 

cochlea in that its effect is to non-linearly amplify quiet 

sounds more than those with large levels [6, 7]; hence, 

WDRC provides more amplification for the low-level 

sounds and less amplification for the high-level sounds. 

In addition, WDRC also provides different amounts of 

amplification for sounds in different frequency regions. 

While WDRC simultaneously fulfills the audibility and 

comfort requirements, it often reduces the performance 

of speech recognition in noise [8] and may worsen the 

output SNRs of the processed speech in HAs [9-12]. 

Chung showed that speech enhancement algorithms 

greatly enhanced the modulation depth of the noise-

suppressed signals when an HA was set to linear 

amplification (i.e. the speech enhancement algorithm 

reduced the noise level and enhanced the modulation 

depth of the speech envelope) [4]. However, when the 

HA was set with a larger compression ratio (CR) (e.g. 

3:1), the modulation depth of the speech envelope was 

greatly reduced compared to that processed by the 
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linear setting. This indicated that the noise level was 

increased and the speech level was decreased by 

WDRC, and the benefit of speech enhancement could 

be affected by the compression inherent in WDRC [13]. 

Many approaches have been developed in order to 

improve the output long-term SNRs of the processed 

speech in HAs. Lai et al. recently proposed a novel 

adaptive amplification scheme (i.e. adaptive WDRC or 

AWDRC) by using the input short-term dynamic range 

to adjust the CR of WDRC to maximize the audibility 

and comfort of the processed speech, and to decrease 

the negative effect of large CR on the output long-term 

SNRs [12]. Figure 1 shows the block diagram of the 

AWDRC-based signal processing in one channel. The 

signal processing steps in AWDRC are similar to those 

used in WDRC, but with an extra feedback pathway to 

modify the WDRC parameters of low-level gain (LLG) 

and high-level gain (HLG) in order to decrease the 

compression as much as possible (i.e. close to linear 

compression or CR=1) in each channel. In the 

feedback pathway of AWDRC in Figure 1, the first task 

is to perform a boundary-check calculation, whereby 

the output level of WDRC is estimated on a frame basis 

and stored in a first-in-first-out queue. When a new 

estimate is obtained, the maximum and minimum 

estimates in the queue are used to drive the operations 

according to the AWDRC rules by g to change the CR 

value of WDRC. Based on the results of boundary-

check calculation, three AWDRC processing rules are 

applied independently in each frequency channel to 

control the CR value of WDRC to keep the output 

speech in a satisfactorily comfortable and audible level. 

The three rules are: (1) the decrease-CR rule, which 

keeps the WDRC processing as close to linear 

processing as possible; (2) the comfort rule, which 

ensures the output sound not to be amplified to an 

uncomfortable level; (3) the audibility rule, which 

ensures the output sound audible to HI individuals. 

More information on these three rules can be found in 

[12]. As a result, AWDRC does not use a static CR 

value as that used in WDRC for sound perception in 

complex listening environments; instead, its operation 

is based on the characteristics of the input sound 

signals to adaptively adjust the CR value by following 

the above-mentioned three rules. Previous studies 

indicated that AWDRC can provide better output long-

term SNRs than the static WDRC method in listening 

conditions simulating those experienced by HI 

individuals fitted with HAs [12]. 

The main purpose of this study is to further examine 

the effects of AWDRC when it is used in conjunction 

with speech enhancement processing in HAs. More 

specifically, we intend to investigate whether the 

advantage of the speech enhancement processing 

could be preserved when integrated with a subsequent 

AWDRC, and how this advantage would be influenced 

by the factors regarding speech recognition (e.g. 

hearing loss audiogram, input level, and input SNR 

level) for HI patients fitted with HAs under noisy 

conditions. 

2. METHODS 

This section presents the speech enhancement and 

amplification scheme that are used in this study. In 

addition, the methods of measurement setup and 

procedures, and SNR evaluation are described. 

2.1. Speech Enhancement 

Generally speaking, speech enhancement 

algorithms can be divided into three categories, as: (1) 

filtering method, which designs a filter to attenuate 

 

Figure 1: Block diagram of a hearing aid signal processing with adaptive dynamic compression (AWDRC) amplification in one 
channel. 



A Study of Adaptive WDRC in Hearing Aids International Journal of Speech & Language Pathology and Audiology, 2013, Vol. 1, No. 2      45 

noise components and generate a clean speech; (2) 

spectral restoration, which estimates a gain function to 

perform noise reduction in the frequency domain to 

obtain clean speech spectrum from the noisy speech 

spectrum; (3) speech model method, which combines 

human speech production models and speech 

reduction functions to perform speech enhancement 

[14, 15]. This study uses a recently developed 

generalized maximum a posteriori spectral amplitude 

(i.e. GMAPA) algorithm for speech enhancement [16]. 

The GMAPA algorithm dynamically adjusts the scale of 

apriori information to calculate the gain function for 

spectral restoration. More specifically, at conditions 

with high SNR levels, GMAPA adapts a small scale to 

prevent over-compensation that may result in speech 

distortions and decrease sound quality. On the other 

hand, at conditions with low SNR levels, GMAPA uses 

a large scale to enable the gain function to more 

effectively remove noise components from the noisy 

speech. The gain function (GGMAPA) in the GMAPA 

algorithm is derived as: 

  

G
GMAPA

=
+

2
+ (2 1)( + ) /

2( + )
,         (1) 

where  denotes a priori SNR,  denotes a posteriori 

SNR, and coefficient  is dependent to the SNR level 

of testing conditions. The training data is used to find a 

mapping function that determines the correlation 

between the optimal  and SNR of the testing signals. 

When performing GMAPA, a sigmoid function is used 

to optimally determine the scale factor  for the gain 

function GGMAPA in Eq. (1) for each utterance, as: 

  

=
max

1+ exp[ b( c)]
,           (2) 

where max is the maximum value (upper bound) for ; 

b and c are coefficients of the sigmoid function;and  

is the mean of a posteriori SNR for a given utterance. 

Figure 2 shows the overall speech enhancement 

system, which can be decomposed into FFT, noise 

tracking, gain estimation, and IFFT stages. FFT stands 

for fast Fourier transform, which converts the noisy 

speech signal, y, from time-domain to frequency-

domain, Y. Next, the noise-tracking stage computes the 

noise power spectral density from noisy speech, Y, to 

obtain a priori SNR and a posteriori SNR statistics. 

Then gain estimation involves calculating a gain 

function, GGMAPA, based on the computed a priori SNR 

and a posteriori SNR statistics, to obtain the enhanced 

speech components, S , by filtering Y through GGMAPA: 

   
S = G

GMAPA
Y .            (3) 

Finally, inverse FFT (IFFT) is applied to convert S  

to obtain the time-domain signal,   s . 

In this study, the parameters of GMAPA are set to 

max = 2, b=–1, and c=11. More detailed descriptions 

on the GMAPA algorithm can be found in [16, 17]. Lai 

et al. recently used this GMAPA algorithm in 

conjunction with WDRC (denoted as G+WDRC 

hereafter) to evaluate the output long-term SNRs of the 

processed speech. They found that G+WDRC could 

provide better output long-term SNR performance than 

WDRC alone (i.e. without GMAPA pre-processing) for 

speech in noise [17]. 

2.2. Five Typical Audiograms of Sensorineural 
Hearing Loss 

Figure 3 shows the five audiograms to be used in 

the present study to compare the efficacies of 

G+WDRC and GMAPA with AWDRC (denoted as 

G+AWDRC hereafter). These five audiograms were 

taken from a series of studies conducted by National 

Acoustic Laboratories (NAL) to compare the 

gain/frequency response of National Acoustic 

Laboratories – Nonlinear Fitting, version 1 (NAL-NL1) 

and other fitting strategies [18, 19]. As shown in Figure 

3, audiograms 1 to 5 represent a flat loss, a reverse 

sloping loss, a moderately sloping high-frequency loss, 

a steeply sloping high-frequency loss with a normal low 

frequency threshold, and a steeply sloping high-

 

Figure 2: Block diagram of a speech enhancement system. 
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frequency loss with a mild low-frequency hearing loss, 

respectively. 

2.3. Measurement Setup 

A platform was developed using LabVIEW and 

Matlab to simulate the effects of speech enhancement 

algorithm (i.e., GMAPA in this study) and amplification 

schemes (i.e. WDRC and AWDRC) to the output long-

term SNRs of the processed speech. When 

implementing the amplification scheme, the crossover 

frequencies between the four channels were 0.56, 

1.43, and 3.56 kHz. Based on individual HI audiogram 

(see Figure 3), the fitting strategy of NAL-NL1 [18, 20] 

was used to calculate the parameters of WDRC and 

AWDRC. The attack and release time of WDRC were 

set as 5 and 26 msec, respectively, which were similar 

to those used by Naylor and Johannesson [10]. The 

boundary of discomfort level (DCL) in the AWDRC 

scheme was set according to the prediction from the 

fitting software, and g was set to 1dB SPL. 

2.4. Methods of SNR Evaluation 

The separation technique of the long-term SNR 

developed by Hagerman and Olofsson [21] was used 

to extract the speech and noise components from the 

WDRC- and AWDRC-amplified speech. Three types of 

speech-plus-noise files were created, as: (1) the 

original speech (S) and the original noise (N); (2) the 

inverted original speech (–S) and the original noise (N); 

(3) the original speech (S) and the inverted original 

noise (–N). In each case the speech and noise were 

combined to produce the desired input SNR level by 

adjusting the sound level in each channel of a two-

channel waveform file, with speech and noise in each 

channel, respectively. The speech-plus-noise files were 

processed by the WDRC and AWDRC amplifiers, after 

which the speech or noise files were ready to be 

extracted. Two files were used to obtain the waveform 

of the speech after processing: signal plus noise “S+N”, 

and signal plus inverted noise “S–N”. The noise was 

canceled by adding these files, leaving only the 

speech. This extracted speech-alone file included 

speech at double intensity, and hence the speech level 

was reduced by 6 dB SPL to obtain accurate speech 

levels. The waveform of the noise after processing was 

obtained similarly by using signal plus noise “S+N”, and 

inverted signal plus noise “–S+N”, with the level of the 

extracted noise also being reduced by 6 dB SPL to 

obtain accurate noise levels. The long-term SNR is 

defined by the difference between the levels of speech 

and noise in decibels. 

2.5. Measurement Procedures 

Figure 4 shows the block diagram of the experiment 

framework. A 15-sec Mandarin sentence spoken by a 

 

Figure 3: Five typical audiograms of sensorineural hearing loss used for comparing the output long-term SNRs between the 
G+WDRC and G+AWDRC processed speech. Audiograms 1 to 5 are a flat loss, a reverse sloping loss, a moderately sloping 
high-frequency loss, a steeply sloping high-frequency loss with a normal low frequency threshold, and a steeply sloping high-
frequency loss with a mild low-frequency hearing loss, respectively. 
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female newscaster was used as “Signal (S)”, and a 15-

sec pink noise was used as “Noise (N)”. The S and N 

were combined at four input SNR levels (i.e. –2, +2, +6, 

+10 dB), that were typical in everyday situations and 

produced a range of intelligibility scores with ceiling or 

floor effects [9]. Three input sound levels were 

prepared, i.e. loud (75 dB SPL), moderate (65 dB SPL) 

and soft (50 dB SPL). The speech and noise signals 

were adjusted simultaneously by an identical absolute 

amount to produce different input SNRs. For instance, 

when the SNR value was set to 6 dB SPL, the level of 

speech signal was increased by 3 dB SPL, and the 

level of noise was decreased by 3 dB SPL. Each input 

noisy signal was processed by speech enhancement 

(i.e. the GMAPA algorithm in this study), and followed 

by the amplification scheme of WDRC or AWDRC, as 

shown in Figure 4 (denoted as G+WDRC and 

G+AWDRC, respectively). Finally, the separation 

technique of the long-term SNR developed by 

Hagerman and Olofsson [21] was used to extract the 

speech and noise components from the output of 

G+WDRC processed and G+AWDRC processed 

signals. In total, twelve (=4 input SNR levels  3 input 

sound levels) types of test signals were used to 

compare the output long-term SNR performance of the 

G+WDRC and G+AWDRC processed speech. 

3. RESULTS 

Figures 5, 6 and 7 show the output long-term SNR 

differences between the G+WDRC and G+AWDRC 

processed speech for the three input sound levels, i.e. 

loud, moderate and soft, respectively. In these figures, 

a positive difference means that the G+AWDRC 

method yields a better output long-term SNR 

performance than the G+WDRC method. For 

audiograms 1 and 2, the respective output long-term 

SNRs in the loud, moderate and soft input levels are 

9.15 to 6.49 dB, 7.93 to 5.15 dB, and 2.87 to 1.22dB; 

meanwhile, the corresponding differences for 

audiograms 3, 4 and 5 are 6.29 to 0.72 dB, 6.00 to 2.88 

dB, and 1.55 to 0.77 dB, both showing that the long-

term SNRs of the G+AWDRC method are higher than 

 

Figure 4: Block diagram of the overall processing to obtain the output long-term SNRs, where S and N denote the speech and 
noise signals, respectively. 

 

Figure 5: Long-term SNR difference between the G+WDRC and G+AWDRC processed speech under loud input sound level. 
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those of the G+WDRC method for the input SNR levels 

ranging from –2 to 10 dB. The overall mean ± standard 

deviation values are 10.36 ± 5.27 dB and 14.25 ± 4.65 

dB for the G+WDRC and G+AWDRC methods, 

respectively. To confirm that the improvement of 

G+AWDRC over G+WDRC is significant, a paired-

sample t-test was conducted. The t-test result indicated 

that the output long-term SNR difference between the 

G+WDRC and G+AWDRC methods was significant 

(t=12.8, p<0.001). 

Table 1 lists the results of one-way analysis of 

variance (ANOVA) and Tukey post hoc comparison for 

the effects of three factors, i.e. hearing-loss audiogram, 

input sound level, and input SNR level. The results of 

ANOVA testing reveal that the preference differs 

significantly (F=3.946, p=0.007) across the five groups 

of hearing-loss audiogram, and the Tukey post hoc 

comparison of the five audiogram groups indicates 

significant difference for group pairs of (type 1 

audiogram, type 3 audiogram), (1,4), (1,5), and (2,5). 

The preference also differs significantly (F=40.522, 

p<0.001) across the three groups of input sound level, 

and the Tukey post hoc comparison of the three groups 

indicates significant difference for group pairs of (loud, 

 

Figure 6: Long-term SNR difference between the G+WDRC and G+AWDRC processed speech under moderate input sound 
level. 

 

 

Figure 7: Long-term SNR difference between the G+WDRC and G+AWDRC processed speech under soft input sound level. 
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soft) and (moderate, soft). Finally, the preference does 

not show significant difference across the four groups 

of input SNR level (F=1.083, p=0.364), but the mean 

differences among the four groups are at least 1.56 dB. 

4. DISCUSSION AND CONCLUSION 

This study compared the output long-term SNRs of 

the G+WDRC and G+AWDRC processed speech. For 

all of the testing conditions, G+AWDRC achieved 

notably higher output long-term SNRs than G+WDRC 

consistently under various input sound levels, input 

SNR levels, and five typical types of hearing-loss 

audiograms. The results also showed that the type of 

audiogram and input sound level significantly affected 

the output long-term SNR difference between 

G+AWDRC and G+WDRC; on the other hand, the 

input SNR level did not cause clear output long-term 

SNR difference. When the same GMAPA speech 

enhancement algorithm was used, AWDRC provided 

higher long-term SNR than WDRC with 6.49, 5.15 and 

1.22 dB for type1 and 2 audiograms, 3.54, 2.88 and 

0.77 dB for type 4 and 5 audiograms, and 0.72, 3.29 

and 0.89 dB for type 3 audiogram, in loud, moderate 

and soft input levels, respectively. 

Figure 8 shows the example waveforms of the 

original noisy speech (at –2 dB input SNR level and 

loud input level), GMAPA processed, G+WDRC 

processed and G+AWDRC processed speech. It can 

be seen from Figure 8b that GMAPA effectively 

reduces the background noise and enhances speech 

segments, leading to a noise-suppressed speech with 

higher SNR level comparing to the original noisy 

speech at –2 dB SNR in Figure 8a. However, when the 

noise-suppressed speech is further processed by 

WDRC, its output long-term SNR is considerably 

decreased (Figure 8c). The decrease may be owing to 

a larger gain for the low-intensity sounds than for the 

high-intensity sounds, and the noise level is generally 

lower than the speech level. Hence, the noise 

components are increased more by WDRC (which 

uses a static CR value), yielding a decreased output 

SNR level. In contrast, the rules of AWDRC always try 

to decrease the CR value of WDRC in each channel, 

so that the low-level noise during the pause segments 

are only amplified with a small gain. This thereby 

improves the output long-term SNRs (Figure 8d) 

relative to those from WDRC (Figure 8c). 

Many studies have suggested that the modulation 

depth of the speech envelope is important for speech 

Table 1: Mean Differences of the Long-Term SNRs between the G+AWDRC and G+WDRC Processed Speech, whereas 

the Effects of Three Factors (i.e., Hearing-Loss Audiogram, Input Sound Level, and Input SNR Level) are 
Analyzed by One-Way ANOVA and Post-Hoc Tukey Test. Asterisk Indicates Statistically Significant (p<0.05) 
Difference between the Selected Pair of Groups 

Group 
notation 

Variables n Mean difference
1
 SD F p 

Post-hoc 
comparison* 

(groupi, groupj) 

 Audiogram    3.946 0.007 

1 1  12 5.62 3.04   

2 2 12 4.78 2.29   

3 3 12 3.09 1.97   

4 4 12 3.13 1.64   

5 5 12 2.84 1.46   

(1,3) 

(1,4) 

(1,5) 

(2,5) 

 Input sound level    40.522 <0.001 

L Loud 20 5.50 2.20   

M Moderate 20 4.78 1.41   

S Soft 20 1.39 0.57   

(L,S) 

(M,S) 

 Input SNR level    1.083 0.364 

10 10 dB 15 3.27 2.30   

6 6 dB 15 3.50 2.24   

2 2 dB 15 4.12 2.38   

–2 –2 dB 15 4.67 2.49   

 

1
Mean difference = the mean output long-term SNR of the G+AWDRC processed speech minus the mean output long-term SNR of the G+WDRC processed speech 

(in dB). 
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perception, especially at low SNR levels [22-27]. 

Chung et al. found that, in general, the higher the 

modulation depth in transmitted or processed signal, 

the higher the speech transmission index or the 

predicted speech intelligibility [13]. They also showed 

that speech enhancement algorithms greatly increased 

the speech intelligibility index, which implied that the 

modulation depth of the temporal envelope was greatly 

enhanced [13]. In addition, the study of Kates et al. 

indicates that when the processed envelope was more 

similar to clean speech, the coherence speech 

intelligibility index score will be higher, suggesting 

better speech intelligibility for hearing loss individuals 

[28]. From the example of Figure 8c and d, we can see 

that G+AWDRC provides better modulation depth than 

G+WDRC, and the envelope of G+AWDRC processed 

was more similar to clean speech than that processed 

by G+WDRC. This implies that G+AWDRC could 

potentially provide better speech intelligibility than 

G+WDRC for HI individuals under noisy conditions. 

The results in this study indicate that AWDRC can 

preserve more benefits of improved output long-term 

SNRs of the enhanced speech from the previous 

speech enhancement stage than WDRC does. This 

implies that AWDRC could potentially provide more 

intelligibility benefits of speech recognition than WDRC 

when combining with speech enhancement algorithm in 

noise for HI individuals fitted with HAs. However, a 

limitation of this study is that the experiments involved 

software simulations to demonstrate the possible 

benefits of long-term SNR and speech intelligibility in 

noise. The characteristics of microphone, receiver, and 

recording space may also affect the final performance. 

Therefore, the overall effectiveness of GMAPA in 

adjunction with AWDRC in real HA systems needs to 

be further investigated. In addition, the objective and 

subjective benefits of G+AWDRC, such as speech 

intelligibility and sound quality, should be evaluated in 

clinical trials. These two parts will be conducted in our 

future study. 

In conclusion, consistent with previous findings 

regarding the advantage of AWDRC to provide better 

long-term SNRs against WDRC, the present study 

further suggests that AWDRC could maintain the long-

term SNR advantage when it is used in conjunction 

with a speech enhancement process. This advantage 

is achieved under different types of audiogram, input 

SNR levels, and input sound levels. In addition, 

G+AWDRC may preserve better modulation depth than 

G+WDRC, which implies that AWDRC could potentially 

maintain more SNR benefits from the enhanced 

 

Figure 8: Example waveforms of (a) unprocessed noisy sentence, at –2 dB input SNR level and loud input level, (b) GMAPA 
processed sentence, (c) G+WDRC processed sentence, and (d) G+AWDRC processed sentence. In (a) to (d), a y-axis 
magnitude of 3270 corresponds to 94 dB SPL. 
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speech obtained from the previous stage for HA users 

in noisy listening conditions. 
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