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Abstract: Purpose: The purpose of this study is to demonstrate a novel innovative computational modeling technique to 
1) track velar and pharyngeal wall movement from dynamic MRI data and to 2) examine the utility of using recorded 
participant audio signals to estimate velar and pharyngeal wall movement during a speech task. A series of dynamic MRI 

data and audio acoustic features were used to develop and inform a Hidden Markov Model (HMM) and Mel-Frequency 
Cepstral Coefficients (MFCC) model.  

Methods: One adult male subject was imaged using a fast-gradient echo Fast Low Angle Shot (FLASH) multi-shot spiral 

technique to acquire 15.8 frames per second (fps) of the midsagittal image plane during the production of “ansa.” The 
nasal surface of the velum and the posterior pharyngeal wall was identified and marked using a novel pixel selection 
method. The error rate was measured by calculating the accumulation error and through visual inspection. 

Results: The proposed model traced and animated dynamic articulators during the speech process in real-time with an 
overall accuracy of 81% considering one pixel threshold. The predicted markers (pixels) segmented the structures of 
interest in the velopharyngeal area and were able to successfully predict the velar and pharyngeal configurations when 

provided with the audio signal.  

Conclusion: This study demonstrates a novel and innovative approach to tracking dynamic velopharyngeal movements. 
Discussion of the potential application of a predictive model that relies on audio signals to detect the presence of a 
velopharyngeal gap is discussed.  

Keywords: Hidden Markov Model, dynamic MRI, velopharyngeal position, computational modeling, Mel-Frequency 

Cepstral Coefficients model. 

INTRODUCTION 

The most commonly used direct assessments for 

visualizing the velopharynx are nasoendoscopy and 

multi-view videofluoroscopy [1-4]. Nasoendoscopy is 

invasive and often provides distorted depth cues 

limiting interpretations related to size of the structures 

and the extent of closure [5-7]. The wide angle 

distortion and oblique angle of view can produce errors 

in the validity and reliability of estimates of the 

nasopharyngeal orifice, particularly related to lateral 

pharyngeal wall movement [8, 9]. Videofluoroscopy 

uses ionizing radiation, thus limiting the safety of 

prolonged and repeated use for assessment and 

follow-up and can present with errors particularly due to 

misalignment of the patient and measurement error 

[10]. The most notable limitation of current direct 

visualization techniques is the inability to quantify  
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velopharyngeal activity [5, 11, 12]. As such, research 

continues to emphasize the need for a clinical dynamic 

tool for assessing velopharyngeal function. 

Dynamic magnetic resonance imaging (MRI) can 

provide valuable information regarding velopharyngeal 

structures during speech. The advantages of dynamic 

MRI include the ability to specify the exact plane of 

interest for imaging which eliminates the depth 

perception distortions found in nasoendoscopy and the 

ability to accurately calculate the in-plane orifice size 

and velopharyngeal gap [13, 14]. Studies have 

demonstrated the use of non-cyclic dynamic MRI in 

children and adults at frames rates between 15.8 and 

100 frames per second [14-16]. These MRI protocol 

are designed to be independent of repetitions, be 

acquired rapidly, and allow sentence-level productions 

to promote more natural speech acquisition [17]. 

Traditionally, manual tracings have been used for 

image segmentation of the velopharyngeal structures 

[17, 18]. These methods are extremely time consuming 

and may demonstrate inter-rater variability. Studies 

have been conducted using ultrasound, x-ray, and MRI 
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to examine the dynamic nature of the velopharyngeal 

structures during speech. Noise, motion artifacts, air 

interfaces, and refractions often complicate the process 

of computer-based automatic tracings. One method to 

overcome the errors associated with computer-based 

tracing algorithms is to use patient data to first train the 

model on the kinematic details. Many image 

segmentation algorithms work with some prior 

knowledge regarding the shape and/or location of 

target objects. 

Speech recognition and segmentation algorithms 

are part of a multi-disciplinary area of research in which 

many studies have been performed [19]. These studies 

primarily use Mel-Frequency Cepstral Coefficients [20, 

21] to extract audio features to improve quality for 

extracting features of the human voice [20, 22]. Mel-

Frequency Cepstral Coefficients has been widely used 

in music analysis studies. To our knowledge, no 

studies have provided a method for tracking dynamic 

MRI data of the velopharyngeal mechanism during 

speech production. This study demonstrates the use of 

MFCC to extract audio features and combined audio 

and visual features were feed a supervised Hidden 

Markov Model (HMM) to track velopharyngeal 

movements from dynamic MRI data.  

Within this study, we also demonstrate a novel 

method for reversing the segmentation algorithm to 

examine if acoustic information (recorded speech) 

could be used to predict the velar and pharyngeal 

locations, thus identify a presence or absence of a 

velopharyngeal gap. Following the development of the 

HMM, we trained the model to evaluate if it could 

predict the location of velar and pharyngeal structures 

based on the audio signals. These innovations may be 

particularly useful for school-based speech pathologists 

by providing a cost-efficient instrument to confirm their 

perceptual speech assessments and provide support 

for appropriate referrals to cleft palate craniofacial 

teams.  

METHOD 

Subject 

In accordance with the local Institutional Review 

Board, one healthy adult (21 years old) male subject 

was recruited to participate in the study. The subject 

had normal speech, language and hearing and 

indicated no history of a craniofacial anomaly, 

swallowing disorder, sleep apnea, or neurologic 

disorder. The subject was scanned in the supine 

position using a Siemens 3 Tesla Trio (Erlangen, 

Germany) MRI scanner and a 12-channel Siemens Trio 

head coil. Simultaneous speech recordings were 

obtained following previously described methods [3, 4, 

6]. The subject wore an MR-compatible headset with 

an attached optical microphone (Dual Channel-FOMRI, 

Optoacoustics Ltd., Or Yehuda, Israel). The optical 

microphone has two channels for active cancellation of 

the loud MR gradient noise while preserving the 

speech sample from the subject.  

The dynamic MRI protocol has been previously 

described [2, 3] and includes a fast-gradient echo Fast 

Low Angle Shot (FLASH) multi-shot spiral technique 

was used to acquire 15.8 frames per second (fps) of 

the midsagittal image plane during the production of 

“ansa.” The speech sample was chosen to represent 

movements of the velum between fully lowered (i.e., 

nasal), elevated (i.e., consonants), and transitions 

between both positions. A metronome beat of 2 Hz was 

played over the head phones to control the rate of the 

speech tasks (two syllables per beat). This imaging 

speed allowed for at least one full image during each 

lowered and each elevated production to analyze the 

data for a nasal and oral sound. 

Images were reconstructed with an output time-

driven sliding window process at 40 frames per second 

(fps). This process allowed data to have a minimal 

amount of interpolation across time and uses the native 

frame rate (15.8 fps) to interpolate images to the 

desired output rate. The sliding window reconstruction 

process minimized redundant information in adjacent 

time points and minimizes temporal blurring [23]. 

Acquisition simulation software provided by the vendor 

of the MRI scanner provided timing data which was 

used to align the audio speech recording with the 

dynamic images. This software allowed for accurate 

simulations of sequence timing using the exact 

acquisition protocol, providing information about data 

acquisition events with 10 s accuracy. 

Dynamic MRI movies were imported into a visual 

and motion graphic software program (Adobe After 

Effects, CS 6, Adobe Systems) where data were 

exported as image sequence of the entire 45 seconds. 

A 7.5 second segment of the 45 seconds was selected. 

The audio and image sequences were isolated from 

7.5 seconds of video at 16 KHz and 40 frames per 

second respectively in order to produce a number of 

frames per second to be a factor of 1:400 sampling 

rate. A ratio of 1:400 creates the proper window size for 

audio feature extraction phase because MFCC requires 
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consecutive samples per frame in order to reflect 

corresponding audio features correctly. If the size of 

window is too short, MFCC cannot extract features 

while larger window sizes may have adverse impacts 

on training time and makes an unnecessary complex 

model. This ratio was selected experimentally.  

The MRI device records images on a constant 

frame rate, thus capturing the trajectory of the velum in 

consecutive discrete frames. A similar discretized 

approach is applied in the audio signal recording. The 

primary characteristic of these two data are that they 

are temporal events, in which chronology of occurrence 

is a main factor (i.e., the data has an order based on 

time). HMM is similar to the aforementioned data with 

respect to timing aspects. The order of occurrence of 

an event (i.e., timing aspect) is a factor in the prediction 

process in HMM. In the training phase for the model, 

audio and corresponding visual features are fed into 

the HMM in chronological order. HMM estimates the 

possibility of marker appearance for each possible 

location based on the given audio features, visual 

features, and previous audio features. Hypothetically, 

there are many locations (i.e., any pixel) that can 

represent a marker at a given time. However, the likely 

locations of markers are in fact a variable of their 

previous locations. Thus the possibility of those pixels 

being close to the previous location is higher than them 

being in other locations. After the training phase is 

completed, the HMM is able to predict the location of 

markers by analyzing audio features in the absence of 

visual clues, because it was tuned by a set of dummy 

data. The model can thus locate the most likely position 

for each marker at any given time, post training. 

Audio Feature Extraction 

Noise removal was accomplished by passing the 

original audio signal through a multi-band noise gate by 

using a 0.5 seconds segmented noise sample profile. 

Spectral noise gating [24] algorithm considers the given 

sample noise as the noise floor (or threshold). Fast 

Fourier Transform (FTT) was then applied to the audio 

sample for each band of the spectrum. The noise is 

then classified for each frequency band by finding the 

maximum value. The original signal is compared with 

corresponding threshold gate to determine whether it 

should be passed or discarded. Signals greater than 

the gate threshold pass as well as the remaining 

signals are discarded by the corresponding gate. The 

noise gate filter is sensitive to the sample profile. 

Therefore, 0.5 seconds of silence was segmented from 

the immediately prior to the actual speech signal 

(Figure 1). After noise reduction, the audio signal 

feature extraction was accomplished by using MFCC. 

The MFCC are short-term spectral-based features [20] 

where the mel-scale is chosen close to the human 

auditory system [25].  

Feature discretization, as seen in Figure 1 (box 

three, top image), is a process of converting the 

continuous audio features into discrete numbered 

groups (i.e., features) which are then applied to the 

HMM for the purpose of training. In this study, the 

discrete groups represented an audio feature that was 

paired with velar and pharyngeal wall shapes. The final 

acoustic feature dimension was 39 elements including 

MFCC coefficient transformations (with 13 elements) 

and the first and the second derivatives (13 elements 

for each derivative). The extracted features are similar 

to the audio signal, and consist of a discrete stream of 

features. Length of feature stream was divided by 

number of video frames to find corresponding audio 

features per frame. In this study, 39 400 features 

represented one frame of video. HMM accepts discrete 

features; therefore, features were discretized and 

labeled in 400 distinct classes from 1 to 400 (i.e., 

rounding up features). In such, we were able to train 

the computerized model to enable accurate prediction 

the location and shape of the velum and pharyngeal 

 

Figure 1: In order to train the model, HMM needed two data sets consisting of audio and visual data sets. Raw audio signal was 
passed through top pipeline to extract audio features and corresponding image sequence was tagged through the bottom 
pipeline. Both audio and visual features were fed into the HMM to accomplish training phase.  
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wall based on given audio signal. (i.e., production of 

/ansa/). As shown in Figure 2, the pipeline of audio 

feature extraction was cloned for the prediction phase. 

Three consecutive blocks of audio feature extractions 

convert the audio signal into a stream of features and 

the trained HMM is then able to predict the location of 

structures for every window (39 400). This process is 

completely automated and the result of prediction can 

be superimposed on MRI data.  

Visual Feature Extraction 

Visual features were extracted using the MR image 

sequence by selecting four markers along the nasal 

surface of the velum and three markers along the 

posterior pharyngeal wall. One stationary pivot point 

was placed at the posterior nasal spine (PNS). As 

shown in Figure 3, the markers were positioned such 

that the markers were located along the length of the 

nasal surface of the effective velar length and not 

continued to the uvula proper due to lack of 

significance of this region during speech production.  

 

Figure 3: Demonstration of a midsagittal MR image plane 
showing the velar (V1-V4) and posterior pharyngeal wall 
(Ph1-Ph3) markers. 

Equal distance between each marker was 

preserved using a novel circular tracking tool to identify 

markers along the length of the velum that extended 

beyond the stationary pivot point at the PNS. A circle 

with a 26 pixels radius was first drawn around the initial 

stationary pivot (i.e., PNS pivot marker). Thus, any 

pixel on the circumference of the circle is at an equal 

distance from the center of the circle. The first marker 

was positioned at the point of intersection of the circle 

with the nasal surface of the velum. The circular 

tracking tool subsequently creates another circle 

around the selected marker to identify the next marker 

on surface of the velum. Each marker represented one 

pixel and the radius around each marker was set at 13 

pixels in order to achieve more markers along the 

length of the velum. This method, as shown in Figure 4, 

provided a consistent approach in the identification of 

every positioned marker along the velar surface. The 

proposed method can be adopted for consistent 

placement of markers in any image of the velum.  

Anterior and posterior pharyngeal wall movements 

were calculated in the horizontal (x-axis) dimension 

(Figure 5). A reference line was drawn through the hard 

palate passing through the posterior pharyngeal wall 

(Figure 5). The first pharyngeal wall marker (Figure 5) 

was placed at the level of the hard palate. The second 

and third lines were placed 42 and 90 pixels below the 

first line, respectively. These markers were determined 

as the most relevant portion of the nasopharynx 

involved in velopharyngeal closure. 

Three hundred sequential images (7.5 seconds of 

selected audio/video at 40 frames per second) were 

manually tagged by the researcher resulting in a table 

that consisted of 300 tuple (rows) which included 7 

markers (4 velar and 3 pharyngeal) and 14 columns. 

Manual tagging was used to examine the validity of the 

HMM predictions compared to manual tagging of 

velopharyngeal structures. Each marker demonstrates 

movement in both the x and y-axis, yielding two values 

for each marker. For each marker, the x-value was 

 

Figure 2: Trained HMM is able to predict the location of the velum and pharyngeal wall solely based on the given audio signal. 
Predicted position is a set of 2D vectors illustrating location and figure of velum and pharyngeal wall superimposed on magnetic 
resonance images. 
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multiplied by 1000, in order to shift the x-value to the 

left side and the corresponding y-value was added to 

create a concatenation of the x and y columns. This 

new set of numbers was labeled from 1 to n, which 

represented the total distinct classes for the 

compounded location of the x and y-axis for the marker 

across the speech sample image sequence.  

 

Figure 5: The superior-most pharyngeal marker was 
positioned along the hard palate plane. Pharyngeal markers 2 
and 3 were positioned 42 and 90 pixels below the initial 
pharyngeal marker.  

The combination of the circular tagging method and 

data reduction contributed to a drastic decrement in the 

number of hidden states. As shown in Table 1, the 

model with the largest number of hidden states 

consisted of 18 different positions. This means that 

HMM eventually will designates the most probable 

state (i.e., position) base on given audio signal and its 

prediction cannot be beyond these 18 possible 

positions. Data reduction occasionally results in the 

loss of certain useful information. However, in this 

study, data reductions were achieved by merging less 

frequent inserted instances resulting from human error 

or low-quality of the images. Moreover, the data 

reduction improved the performance of the prediction 

system in terms of response time, because the 

generated model had less hidden states. 

Computer Prediction Algorithm 

After the audio and visual features were extracted 

and the HMM [26] was trained by corresponding audio 

and visual features, the model was used to predict 

velar and pharyngeal wall boundaries relative to the 

given audio signal. The models were trained using a 

200 audio feature data set and 100 samples were set 

to test and evaluate the accuracy of proposed model. 

The internal structure of HMM is divided into two set of 

graphs which can be presented as two different 

matrices consisting of observations of the model and 

emission. Observation matrix is a window of extracted 

audio signal features (400 samples labeled 1 to 400). 

In the observation matrix, the possibility of transition 

from one label at time (t) to another possible label at 

t+1 (precisely from one sample to another possible 

sample) is stored in this matrix. Consequently, this 

matrix can address any arbitrary audio signal by a 

400 400 matrix. Each entry in this matrix is less than 

or equal to one. Emission matrix is the intersection of 

each element in observation matrix and all possible 

visual features. Each entry of emission matrices, from t 

to t+1, represents distribution of observation values 

 

Figure 4: Demonstration of the tagging system used for determining the placement of each marker. In the far left image, the 
white dot is placed on the PNS. A 26 pixels radius is drawn around the pivot point (PNS) and a 13 pixels radius is drawn around 
each consecutive marker. The next marker is then placed at the point where the circle crosses the nasal surface of the velum. 

Table 1: Number of Hidden States for Markers where V = Velar Markers and Ph = Pharyngeal Wall Markers 

 V1  V2  V3  V4  Ph1  Ph2  Ph3  

Hidden States  4  8  18  15  3  2  2  
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from time to time. In contrast to traditional linear left to 

right HMM often used in speech recognition systems 

[22], the topology of the model developed in this study 

did not follow a linear pattern. The model used in this 

study had two parameters that consisted of transition 

and emission matrices [26] that were estimated based 

on the visual and audio features. Transition and 

emission matrices are beneficial in that they allow for 

the probability of moving structures from one state to 

another in a dynamic system, as opposed to a system 

with categorical organization. This is particularly 

important in the velopharyngeal system, which is a very 

rapid and dynamic speech system. Two hundred audio 

samples were used to train the HMM designed in this 

study. One hundred audio samples (2.5 seconds or 

/ansa/ produced 2.5 times) were used to test the ability 

of the prediction model. The Viterbi algorithm [27] was 

then applied to predict the most likely sequence of 

hidden states. 

RESULTS 

This study demonstrates a method for using HMM 

and MFCC to track velar and pharyngeal wall 

movement during dynamic MRI data. A second aim 

was to examine if the novel computerized protocol 

could accurately identify the location of the velar and 

pharyngeal wall locations based on the audio signal. 

The accuracy of the computerized model was analyzed 

using two distinct methods, including accumulative 

Euclidean distance and visual inspection. Accumulative 

Euclidean distance is a mathematical approach to 

accumulate minimum distances between prediction and 

corresponding actual markers manually tagged by the 

researcher. The level of accuracy was evaluated as a 

one pixel threshold, in which an error in the model was 

indicated by the prediction phase producing a marker 

that was greater than one pixel of the corresponding 

marker identified by the researcher.  

Accumulative Euclidean distance 

This measurement introduced the accumulation of 

minimum distance between predicted point by trained 

HMM and actual markers that the researcher had 

placed on the image.  

Accumulative Euclideance = Lp
m Lr

m

m=1

markers 2

 

Where location of predicted marker was 

Lp = (xp , yp )  and the location of marker was tagged by 

research was Lr = (xr , yr ) . Zero error would indicate 

that every predicted marker was exactly overlaid on its 
corresponding manual tag. One pixel was set as the 
threshold because those markers having less than one 
pixel of error may not be visible in the superimposed 
image. 

Figure 6 demonstrates an accumulative graph of 

error values for the four velar markers, where the 

vertical axis (top graph) demonstrates the sum of error 

per pixels through the velar markers and the x - axis 

represents the time (milliseconds). The middle and 

lower graphs represent a spectrogram and 

spectrograph respectively, for 2.5 consecutive subject 

productions of /ansa/. As seen in Figure 6, the greater 

the amplitude, such as during the production of /a/, the 

greater the amount of error noted in the prediction 

model. The productions of /n/ and /s/ showed similar 

error rates which were influenced by the adjacent /a/ 

production (coarticulatory effect). Figure 6 

demonstrates the error of the velar prediction using the 

computerized predictive model. Each point in the 

graphs accounts for the average error per pixel of each 

marker. Given 1 pixel threshold for these data, no error 

was introduced in V1 prediction, while V2, V3, and V4 

were predicted with a different level of error. Error rates 

between the predicted and actual locations were within 

1-2 pixels across velar markers. The error in V1 was 

dramatically less than other markers located on the 

velar surface. There were four hidden states (i.e., 

possible positions) defined for V1 (hidden states in 

Table 1). Markers V2, V3, and V4 were defined by 8, 

18, and 15 hidden states, respectively. Fewer hidden 

states resulted in less error in the prediction model. 

Markers V3 and V4 showed the largest number of 

hidden states (i.e., possible velar positions), which is a 

result of this region (near the velar knee) being the 

most dynamic, moveable segment of the 

velopharyngeal system. Overall, the model successfully 

traced and animated dynamic articulators during 

speech production with an overall accuracy of 81% 

considering one pixel threshold. 

Due to limited movement of the pharyngeal wall, the 

residual prediction introduced a maximum of one pixel 

error; consequently, there was no error displayed in 

pharyngeal wall superimposed version. Based on the 

MRI resolution of .63 mm, one pixel is equal to .63 mm. 

At rest, the velopharyngeal port measured from the 

velar eminence to the posterior pharyngeal wall 

measured 6.6 mm (i.e., 10.4 pixels). The error rate of 

1-2 pixels across markers demonstrates a highly 

predictive model for velar and posterior pharyngeal wall 

positioning.  
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Figure 6: Velum prediction accumulative error and 
spectrogram with formants. 

Visual Inspection  

Visual inspection was performed by superimposing 

the predicted positions from the model over the manual 

markers placed by the researcher (Figure 7). Results 

across each marker for every image sequence was 

evaluated and rated at either pass or fail assuming the 

same 1 pixel error rate. The result of inspection was 

83% acceptance.  

The inspection percentage accounts for the number 

of predicted frames on superimposed MR images that 

were accepted by the researcher. Visual inspection 

percentage was slightly higher (improved) than the 

accumulative Euclidean distance accuracy because 

although some of predictions had not been exactly 

overlaid on tags, they still laid on the boundary of the 

velum. Therefore, the researcher accepted these velar 

boundary tags as correct predictions. The difference 

between visual inspection and accumulative distance is 

not significant (p > 0.05) for this image set. However, 

we might expect divergence between these two 

measurements on higher resolution images, because 

there are more pixels potentially acceptable but not 

tagged. 

DISCUSSION 

This study demonstrates a novel and innovative 

methods to use computer training algorithms to track 

the dynamic velar and pharyngeal wall movements 

from MRI data. The model showed an overall accuracy 

of 81% considering one pixel threshold in being able to 

track the velopharyngeal movements from dynamic 

MRI data. The average error across V1 marker was 

0.25 pixels, V2 was 0.835 pixels, V3 was 1.12 pixels, 

and V4 was 1.1 pixels. Thus, the regions of the velum 

that demonstrated the greatest and fastest movement 

trajectories (near the velar knee) displayed the greatest 

degree of error in the model. During speech production, 

for an oral to nasal production, the velum must move 

rapidly to make contact with the pharyngeal wall. This 

velocity and high deformability within short durations 

could attribute to the growth in error rate in the 

 

Figure 7: The top row represents the actual markers which are placed by researcher. The bottom row represents the 
superimposed actual markers and the predicted markers. In order to be distinguishable, predicted markers are connected.  
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prediction model. Because the speech sample 

contained more oral productions compared to nasal 

productions, the training protocol was dominant in velar 

positions during oral productions. It is possible that a 

more balanced speech production or speech stimuli 

containing no nasal sounds may produce a better 

model. The unbalanced training sets combined with the 

high level of deformability of the velum during nasal to 

oral productions likely contribute to the greater error 

rates noted along markers V3 and V4. A uniform 

sample distribution may solve this unbalanced training 

problem. A possible solution may be chunking audio 

signals into smaller segments which would contain 

uniform distribution. The input signal could thus be 

trimmed in which low and high amplitudes are 

balanced. Future studies could investigate the addition 

of a post processing phase and designing a smoother 

filter such as a Kalman filter [28] to make the prediction 

more accurate.  

 Image segmentation is used to cluster pixels into a 

designate regions using thresholding, histogram based, 

clustering, and edge detection methods. Edge 

detection is likely the most commonly used method in 

tracking the regions of the oral and pharyngeal 

structures. The primary disadvantage of this method, 

however, is the discontinuity that occurs when two 

structures of similar gradients communicate and the 

boundaries are lost. This is the primary concern in 

tracking velar movements due to the communication of 

the velum and posterior pharyngeal wall during closure. 

This method, therefore, cannot be successfully applied 

to velar tracking. The current model offers an 

advantage over this method in that it does not rely 

solely on edge tracking systems. HMM differs from 

other machine learning techniques; however, they have 

similar fundamental concepts. HMM requires 1) time 

series based images (image sequence) and 2) a 

synchronized associated audio. HMM is one of the 

most well-defined methods in computer speech 

recognition; however, it can be replaced with other 

prediction models. HMM is widely used in speech-to-

text. The significant differences between the traditional 

application of HMM (speech-to-text) and the application 

of HMM in the present study are as follows: 

1) The proposed model reconstructs location and 

figure of velum and pharyngeal wall for each 

frame, however in traditional speech-to-text 

approaches, a chunk of given signal is mapped 

to a word.  

2) Compared to other classifiers, HMM displays a 

faster training and response time. This feature 

enables researchers to use this tool in real-time 

mode and monitor the structures on real-time, 

such as shown with dynamic MRI speech 

samples. 

The primary advantage of this method is the ability 

to apply the trained model to a new set of patient data 

to predict velar positioning. This method is also 

advantageous because it overcomes the barriers 

commonly seen in edge detection methods when 

edges are difficult to delineate. Although error rate was 

relatively low, this is noted as the primary disadvantage 

and future developments should aim to decrease this 

error rate. While this error rate may be acceptable in 

normal anatomy, it may be problematic in disordered 

anatomy where velopharyngeal gap sizes may be 

minimal and thus not detected using these methods.  

It was expected that the error rate would be the 

least for the nasal production compared to the sibilant 

and vowel production. This was expected due to the 

improved boundary created by the air interface while 

the velum is in the lowered position. When the velum is 

elevated, the boundary of the velum to the pharyngeal 

wall is difficult to separate. The sibilant /s/ production, 

however, was similar in error rate to that of the nasal 

production. Accumulative error and the audio signal 

amplitude showed a similar pattern in which the higher 

the amplitude generated in the signal, the higher the 

residual error that was introduced into the model.  

Depending on the type of closure pattern, 

velopharyngeal movement typically involves superior 

and posterior movement of the velum, medial 

movement of the lateral pharyngeal walls, and anterior 

movement of the posterior pharyngeal wall. This 

sphincter-like action of the velopharyngeal port 

represents a three dimensional process. However, the 

present study focused solely on the two-dimensional 

process along the midsagittal plane. It demonstrated 

the success of a predictive model using audio signals 

to feed a computerized system to predict 

velopharyngeal structural positions in the midsagittal 

image plane. Future studies should aim to evaluate the 

system from an oblique coronal or axial image plane to 

evaluate if this model can predict velopharyngeal gaps 

and positions of the velum and pharyngeal wall from 

the portal view. As an experimental study in innovative 

methods, we did not include assess the application of 

this development in individuals with a velopharyngeal 

gap. We are currently working to enhance our model by 

decreasing the error rate so that methods are sensitive 

to small velopharyngeal gap sizes.  
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This study provides advancement in the area of 

dynamic MRI data processing of the velopharyngeal 

mechanism. Studies have demonstrated the potential 

benefits of using dynamic MRI for cleft palate speech 

assessments [14, 15, 17]. However, an obstacle for 

these studies has been the inability to rapidly produce 

meaningful clinical data to the practicing clinician and 

cleft palate team. Unlike traditional imaging methods 

(e.g., videofluoroscopy and nasoendoscopy), dynamic 

MRI requires post-processing of the data. Future 

studies should include larger sample sizes, subjects 

with abnormal velopharyngeal movements, and assess 

velopharyngeal closure from the plane in which closure 

occurs [14]. A child with velopharyngeal dysfunction 

(perceived hypernasality) may demonstrate a very 

small velopharyngeal gap. For this reason, the error 

threshold was set at 1 pixel.  

Advantages of this approach include a novel 

method to evaluate the presence of a velopharyngeal 

gap using audio files. It is not expected that this 

innovation would replace any of the current 

instrumentation in cleft care which provides direct 

visualization of the velopharyngeal anatomy. Rather, 

this may be a cost-efficient method which may be 

particularly useful for school-based speech language 

pathologists who do not have access to traditional 

velopharyngeal instrumentation. In such, this tool may 

provide further support for the school-based clinician 

during the perceptual assessment of resonance. This 

may improve their confidence in making referrals for 

velopharyngeal dysfunction (as evidenced by 

perceptual speech assessment and a documented 

velopharyngeal gap) to a cleft palate craniofacial team 

for further evaluation. Disadvantages of the present 

study include the single study design and limiting 

interpretations to only the midsagittal image plane. 

Improvements in the model construction such as using 

a balanced (oral to nasal) training protocol may 

demonstrate an improved model. 

CONCLUSION 

This study demonstrates a potential method for 

using audio signals to determine velopharyngeal 

positioning during speech production. Although this 

study demonstrated a single case study, the findings 

illustrate a novel innovative model combining training 

and evaluating protocols that can be applied to any 

speech task. This is the first study to demonstrate 

automatic tracings of velar and pharyngeal movement 

along the midsagittal plane using dynamic MRI. The 

results from this study demonstrate a unique approach 

that relies on audio recordings of speech stimuli to 

provide a visual representation of velopharyngeal 

function. Future studies should investigate methods for 

velar prediction based on acoustic correlates in clinical 

populations such as cleft palate and dysarthria. 
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