Buruli Ulcer: What are the Future Perspectives in Dealing with the extensive Necrotizing Skin Disease

Authors

  • Kwame Kumi Asare Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana and Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University Sakamoto 1-12-4, Nagasaki852-8523, Japan

DOI:

https://doi.org/10.12970/2310-998X.2020.08.04

Keywords:

Buruli ulcer, mycolactone, Mycobacteria ulcerans, dermatological disease, subcutaneous necrosis, bacteriophage therapy

Abstract

Buruli ulcer (BU) is a necrotizing skin disease cause by mycolactone-producing Mycobacteria ulcerans. The disease leaves permanent disabilities, stigmatization, a clinical challenge linked to morbidity and treatment with negative socioeconomic impact. The current effective treatment remains antibiotics combination therapies of rifampicin and streptomycin with 2-10% of the patients developing worse extensive ulcers after the treatment and there is no vaccine. In the case of extensive ulceration, the treatment option remains surgical resection and skin grafting which is very challenging and even when successful leaves scars and disability.

This review focuses on the recent understanding of mechanisms upon which mycolactone-producing Mycobacteria ulcerans induces extensive skin ulcers and suggest areas within the pathological pathways which can be targeted for the future management and treatment of the disease. The mycolactone binds to Sec 61 translocon subunit and inhibits the binding immunoglobulin protein (BiP). A point mutations R66I, R66G, and S82P in the Sec61α subunit has been shown to prevent mycolactone binding to the Sec61 lumen. The mycolactone also compromised the cytoskeleton and dysregulated immunity through the activation of the AT2R receptor. Thus, targeting the mycolactone binding site either by inducing mutation or competitive inhibition compounds, blocking the AT2R receptor and the uncontrol activation ARP2/3 could revolutionize the management of extensive ulceration in BU patients.

References

Van Zyl L, Du Plessis J, Viljoen J. Cutaneous tuberculosis overview and current treatment regimens. Tuberculosis 2015; 95(6): 629-38. https://doi.org/10.1016/j.tube.2014.12.006

Franco-Paredes C, Marcos LA, Henao-Martínez AF, Rodríguez-Morales AJ, Villamil-Gómez WE, Gotuzzo E, Bonifaz A. Cutaneous mycobacterial infections. Clinical microbiology reviews 2018; 32(1). https://doi.org/10.1128/CMR.00069-18

Yates VM, Walker SL. Mycobacterial infections. Rook's Textbook of Dermatology, Ninth Edition 2016; 1-57. https://doi.org/10.1002/9781444317633.ch31

Sangüeza OP, Acosta JM, Sangüeza M, Bravo F. Dermatopathology of Tropical Diseases: Pathology and Clinical Correlations. JP Medical Ltd; 2017.

Omansen TF, Erbowor-Becksen A, Yotsu R, van der Werf TS, Tiendrebeogo A, Grout L, Asiedu K. Global epidemiology of Buruli ulcer, 2010–2017, and analysis of 2014 WHO programmatic targets. Emerging infectious diseases 2019; 25(12): 2183. https://doi.org/10.3201/eid2512.190427

Johnson PD. Buruli ulcer: cured by 8 weeks of oral antibiotics? The Lancet 2020; 395(10232): 1231-2. https://doi.org/10.1016/S0140-6736(20)30478-5

Guenin-Macé L, Veyron-Churlet R, Thoulouze MI, Romet-Lemonne G, Hong H, Leadlay PF, Danckaert A, Ruf MT, Mostowy S, Zurzolo C, Bousso P. Mycolactone activation of Wiskott-Aldrich syndrome proteins underpins Buruli ulcer formation. The Journal of clinical investigation 2013; 123(4): 1501-12. https://doi.org/10.1172/JCI66576

Bratschi MW, Bolz M, Minyem JC, Grize L, Wantong FG, Kerber S, Tabah EN, Ruf MT, Mou F, Noumen D, Boock AU. Geographic distribution, age pattern and sites of lesions in a cohort of Buruli ulcer patients from the Mapé Basin of Cameroon. PLoS Negl Trop Dis 2013; 7(6): e2252. https://doi.org/10.1371/journal.pntd.0002252

Nakanaga K, Yotsu RR, Hoshino Y, Suzuki K, Makino M, Ishii N. Buruli ulcer and mycolactone-producing mycobacteria. Japanese journal of infectious diseases 2013; 66(2): 83-8. https://doi.org/10.7883/yoken.66.83

Zingue D, Bouam A, Tian RB, Drancourt M. Buruli ulcer, a prototype for ecosystem-related infection, caused by Mycobacterium ulcerans. Clinical microbiology reviews 2018; 31(1). https://doi.org/10.1128/CMR.00045-17

Röltgen K, Pluschke G. Buruli ulcer: The Efficacy of Innate Immune Defense May Be a Key Determinant for the Outcome of Infection With Mycobacterium ulcerans. Frontiers in Microbiology 2020; 11: 1018. https://doi.org/10.3389/fmicb.2020.01018

Johnson PD, Demangel C, Stinear TP, Benbow ME, Fyfe JA. Understanding Buruli Ulcer (Mycobacterium ulcerans Disease). Emerging Infections 9 2010: 241-60. https://doi.org/10.1128/9781555816803.ch12

Wagner D, Young LS. Nontuberculous mycobacterial infections: a clinical review. Infection 2004; 32(5): 257-70. https://doi.org/10.1007/s15010-004-4001-4

Elsner L, Wayne J, O'Brien CR, McCowan C, Malik R, Hayman JA, Globan M, Lavender CJ, Fyfe JA. Localised Mycobacterium ulcerans infection in a cat in Australia. Journal of feline medicine and surgery 2008; 10(4): 407-12. https://doi.org/10.1016/j.jfms.2008.03.003

Duker AA, Portaels F, Hale M. Pathways of Mycobacterium ulcerans infection: a review. Environment International 2006; 32(4): 567-73. https://doi.org/10.1016/j.envint.2006.01.002

Yotsu RR, Nakanaga K, Hoshino Y, Suzuki K, Ishii N. Buruli ulcer and current situation in Japan: a new emerging cutaneous Mycobacterium infection. The Journal of dermatology 2012; 39(7): 587-93. https://doi.org/10.1111/j.1346-8138.2012.01543.x

Saxena AK, Azad CS. Neglected tropical bacterial diseases. InCommunicable Diseases of the Developing World 2016 (pp. 169-244). Springer, Cham. https://doi.org/10.1007/7355_2016_5

Abdelmagid NO. Genetic regulation of neuroinflammation after infection and injury. Inst för klinisk neurovetenskap/Dept of Clinical Neuroscience; 2012.

Zarogoulidis P, Papanas N, Kioumis I, Chatzaki E, Maltezos E, Zarogoulidis K. Macrolides: from in vitro anti-inflammatory and immunomodulatory properties to clinical practice in respiratory diseases. European journal of clinical pharmacology 2012; 68(5): 479-503. https://doi.org/10.1007/s00228-011-1161-x

Silva MT, Portaels F, Pedrosa J. Pathogenetic mechanisms of the intracellular parasite Mycobacterium ulcerans leading to Buruli ulcer. The Lancet infectious diseases 2009; 9(11): 699-710. https://doi.org/10.1016/S1473-3099(09)70234-8

Ogbechi J. Investigating the mechanism behind the tissue necrosis in mycobacterium ulcerans infection (Doctoral dissertation, University of Surrey).

Torrado E. Cellular immune response to experimental infections with mycobacteria with different degrees of virulence: development of new preventive strategies.

Song OR, Kim HB, Jouny S, Ricard I, Vandeputte A, Deboosere N, Marion E, Queval CJ, Lesport P, Bourinet E, Henrion D. A bacterial toxin with analgesic properties: hyperpolarization of DRG neurons by mycolactone. Toxins 2017; 9(7): 227. https://doi.org/10.3390/toxins9070227

Guenin-Macé L, Baron L, Chany AC, Tresse C, Saint-Auret S, Jönsson F, Le Chevalier F, Bruhns P, Bismuth G, Hidalgo-Lucas S, Bisson JF. Shaping mycolactone for therapeutic use against inflammatory disorders. Science Translational Medicine 2015; 7(289): 289ra85. https://doi.org/10.1126/scitranslmed.aab0458

Reynaert ML, Dupoiron D, Yeramian E, Marsollier L, Brodin P. Could Mycolactone Inspire New Potent Analgesics? Perspectives and Pitfalls. Toxins 2019; 11(9): 516. https://doi.org/10.3390/toxins11090516

Du Toit A. Bacterial toxins: A'pain-relieving'toxin. Nature Reviews Microbiology 2014; 12(8): 530. https://doi.org/10.1038/nrmicro3318

Ji RR, Chamessian A, Zhang YQ. Pain regulation by non-neuronal cells and inflammation. Science 2016; 354(6312): 572-7. https://doi.org/10.1126/science.aaf8924

Sarfo FS, Phillips R, Wansbrough‐Jones M, Simmonds RE. Recent advances: role of mycolactone in the pathogenesis and monitoring of Mycobacterium ulcerans infection/Buruli ulcer disease. Cellular microbiology 2016; 18(1): 17-29. https://doi.org/10.1111/cmi.12547

World Health Organization. Treatment of Mycobacterium ulcerans disease (Buruli ulcer): guidance for health workers.

Bessaguet F, Magy L, Desmoulière A, Demiot C. The therapeutic potential of renin angiotensin aldosterone system (RAAS) in chronic pain: from preclinical studies to clinical trials. Expert Review of Neurotherapeutics 2016; 16(3): 331-9. https://doi.org/10.1586/14737175.2016.1150179

Fraga AG, Barbosa AM, Ferreira CM, Fevereiro J, Pedrosa J, Torrado E. Immune-evasion strategies of mycobacteria and their implications for the protective immune response.

Vahidy WH, Ong WY, Farooqui AA, Yeo JF. Effects of intracerebroventricular injections of free fatty acids, lysophospholipids, or platelet activating factor in a mouse model of orofacial pain. Experimental brain research 2006; 174(4): 781-5. https://doi.org/10.1007/s00221-006-0672-7

Pérez-Chacón G, Astudillo AM, Balgoma D, Balboa MA, Balsinde J. Control of free arachidonic acid levels by phospholipases A2 and lysophospholipid acyltransferases. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids 2009; 1791(12): 1103-13. https://doi.org/10.1016/j.bbalip.2009.08.007

Kramer RM, Sharp JD. Structure, function and regulation of Ca2+-sensitive cytosolic phospholipase A2 (cPLA2). FEBS letters 1997; 410(1): 49-53. https://doi.org/10.1016/S0014-5793(97)00322-0

Vemuri GS, McMorris FA. Oligodendrocytes and their precursors require phosphatidylinositol 3-kinase signaling for survival. Development 1996; 122(8): 2529-37.

Astarita G, Ahmed F, Piomelli D. Identification of biosynthetic precursors for the endocannabinoid anandamide in the rat brain. Journal of lipid research 2008; 49(1): 48-57. https://doi.org/10.1194/jlr.M700354-JLR200

Tassoni D, Kaur G, Weisinger RS, Sinclair A. The role of eicosanoids in the brain. Asia Pacific journal of clinical nutrition 2008; 17(S1): 220-8.

Bhavya BC, Haridas M. Anti-inflammatory molecules: immune system mediators. InBioresources and Bioprocess in Biotechnology 2017 (pp. 235-268). Springer, Singapore. https://doi.org/10.1007/978-981-10-4284-3_10

Boorman E, Zajkowska Z, Ahmed R, Pariante CM, Zunszain PA. Crosstalk between endocannabinoid and immune systems: a potential dysregulation in depression? Psychopharmacology 2016; 233(9): 1591-604. https://doi.org/10.1007/s00213-015-4105-9

Fein A. Nociceptors and the perception of pain. University of Connecticut Health Center 2012; 4: 61-7.

Fischer MJ, Mak SW, McNaughton PA. Sensitisation of Nociceptors–What are Ion Channels Doing? The Open Pain Journal 2010; 3(1). https://doi.org/10.2174/1876386301003010082

Dhand A, Aminoff MJ. The neurology of itch. Brain 2014; 137(2): 313-22. https://doi.org/10.1093/brain/awt158

Vinayak M, Singh AK. Signaling of Nociceptors and Pain Perception: Impact of Age. InModels, Molecules and Mechanisms in Biogerontology 2019 (pp. 91-107). Springer, Singapore. https://doi.org/10.1007/978-981-13-3585-3_5

Holden AV, Winlow W, editors. The Neurobiology of Pain: Symposium of the Northern Neurobiology Group, Held at Leeds on 18 April, 1983. Manchester University Press 1984.

Veldhuis NA, Poole DP, Grace M, McIntyre P, Bunnett NW. The G protein–coupled receptor–transient receptor potential channel axis: molecular insights for targeting disorders of sensation and inflammation. Pharmacological Reviews 2015; 67(1): 36-73. https://doi.org/10.1124/pr.114.009555

Mickle AD, Shepherd AJ, Mohapatra DP. Sensory TRP channels: the key transducers of nociception and pain. InProgress in molecular biology and translational science 2015; (Vol. 131, pp. 73-118). Academic Press. https://doi.org/10.1016/bs.pmbts.2015.01.002

Santoni G, Cardinali C, Morelli MB, Santoni M, Nabissi M, Amantini C. Danger-and pathogen-associated molecular patterns recognition by pattern-recognition receptors and ion channels of the transient receptor potential family triggers the inflammasome activation in immune cells and sensory neurons. Journal of neuroinflammation 2015; 12(1): 1-0. https://doi.org/10.1186/s12974-015-0239-2

Everaerts W, Nilius B, Owsianik G. The vanilloid transient receptor potential channel TRPV4: from structure to disease. Progress in biophysics and molecular biology 2010; 103(1): 2-17. https://doi.org/10.1016/j.pbiomolbio.2009.10.002

De Petrocellis L, Di Marzo V. Lipids as regulators of the activity of transient receptor potential type V1 (TRPV1) channels. Life sciences 2005; 77(14): 1651-66. https://doi.org/10.1016/j.lfs.2005.05.021

Steinhoff MS, von Mentzer B, Geppetti P, Pothoulakis C, Bunnett NW. Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiological reviews 2014; 94(1): 265-301. https://doi.org/10.1152/physrev.00031.2013

Corrigan F, Mander KA, Leonard AV, Vink R. Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation. Journal of neuroinflammation 2016; 13(1): 1-2. https://doi.org/10.1186/s12974-016-0738-9

Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell 2009; 139(2): 267-84. https://doi.org/10.1016/j.cell.2009.09.028

Scholzen T, Armstrong CA, Bunnett NW, Luger TA, Olerud JE, Ansel JC. Neuropeptides in the skin: interactions between the neuroendocrine and the skin immune systems. Experimental dermatology 1998; 7(2‐3): 81-96. https://doi.org/10.1111/j.1600-0625.1998.tb00307.x

Woolf CJ. Pain: moving from symptom control toward mechanism-specific pharmacologic management. Annals of internal medicine 2004; 140(6): 441-51. https://doi.org/10.7326/0003-4819-140-8-200404200-00010

Laedermann CJ, Abriel H, Decosterd I. Post-translational modifications of voltage-gated sodium channels in chronic pain syndromes. Frontiers in pharmacology 2015; 6: 263. https://doi.org/10.3389/fphar.2015.00263

Eisenhut M, Wallace H. Ion channels in inflammation. Pflügers Archiv-European Journal of Physiology 2011; 461(4): 401-21. https://doi.org/10.1007/s00424-010-0917-y

Linley JE, Rose K, Ooi L, Gamper N. Understanding inflammatory pain: ion channels contributing to acute and chronic nociception. Pflügers Archiv-European Journal of Physiology 2010; 459(5): 657-69. https://doi.org/10.1007/s00424-010-0784-6

Merighi A, Salio C, Ferrini F, Lossi L. Neuromodulatory function of neuropeptides in the normal CNS. Journal of chemical neuroanatomy 2011; 42(4): 276-87. https://doi.org/10.1016/j.jchemneu.2011.02.001

Benarroch EE. Neuropeptides in the sympathetic system: presence, plasticity, modulation, and implications. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society 1994; 36(1): 6-13. https://doi.org/10.1002/ana.410360105

Liu XJ, Salter MW. Glutamate receptor phosphorylation and trafficking in pain plasticity in spinal cord dorsal horn. European Journal of Neuroscience 2010; 32(2): 278-89. https://doi.org/10.1111/j.1460-9568.2010.07351.x

Ma W, Quirion R. Inflammatory mediators modulating the transient receptor potential vanilloid 1 receptor: therapeutic targets to treat inflammatory and neuropathic pain. Expert opinion on therapeutic targets 2007; 11(3): 307-20. https://doi.org/10.1517/14728222.11.3.307

Rogoz K, Andersen HH, Kullander K, Lagerström MC. Glutamate, substance P, and calcitonin gene-related peptide cooperate in inflammation-induced heat hyperalgesia. Molecular pharmacology 2014; 85(2): 322-34. https://doi.org/10.1124/mol.113.089532

Avelino A, Cruz F. TRPV1 (vanilloid receptor) in the urinary tract: expression, function and clinical applications. Naunyn-Schmiedeberg's archives of pharmacology 2006; 373(4): 287-99. https://doi.org/10.1007/s00210-006-0073-2

Russo AF. Calcitonin gene-related peptide (CGRP): a new target for migraine. Annual review of pharmacology and toxicology 2015; 55: 533-52. https://doi.org/10.1146/annurev-pharmtox-010814-124701

Lagerström MC, Rogoz K, Abrahamsen B, Persson E, Reinius B, Nordenankar K, Ölund C, Smith C, Mendez JA, Chen ZF, Wood JN. VGLUT2-dependent sensory neurons in the TRPV1 population regulate pain and itch. Neuron 2010; 68(3): 529-42. https://doi.org/10.1016/j.neuron.2010.09.016

Bieri, Raphael. "Aspects of the pathogenesis, immunity and treatment of Buruli ulcer." PhD diss., University_of_Basel, 2015.

Demangel C, High S. Sec61 blockade by mycolactone: A central mechanism in Buruli ulcer disease. Biology of the Cell 2018; 110(11): 237-48. https://doi.org/10.1111/boc.201800030

Rosenberger CM, Finlay BB. Phagocyte sabotage: disruption of macrophage signalling by bacterial pathogens. Nature reviews Molecular cell biology 2003; 4(5): 385-96. https://doi.org/10.1038/nrm1104

Torrado E, Fraga AG, Castro AG, Stragier P, Meyers WM, Portaels F, Silva MT, Pedrosa J. Evidence for an intramacrophage growth phase of Mycobacterium ulcerans. Infection and immunity 2007; 75(2): 977-87. https://doi.org/10.1128/IAI.00889-06

Sarfo FS, Phillips RO, Rangers B, Mahrous EA, Lee RE, Tarelli E, Asiedu KB, Small PL, Wansbrough-Jones MH. Detection of Mycolactone A/B in Mycobacterium ulcerans–Infected Human Tissue. PLoS Negl Trop Dis 2010; 4(1): e577. https://doi.org/10.1371/journal.pntd.0000577

Simmonds RE, Lali FV, Smallie T, Small PL, Foxwell BM. Mycolactone inhibits monocyte cytokine production by a posttranscriptional mechanism. The Journal of Immunology 2009; 182(4): 2194-202. https://doi.org/10.4049/jimmunol.0802294

Ogbechi, Joy. "Investigating the mechanism behind the tissue necrosis in mycobacterium ulcerans infection." PhD diss., University of Surrey, 2017.

Asantewaa, Y. Y. "The Role of Natural Antioxidants in the Attenuation of Mycolactone Toxicity in Buruli Ulcer Disease." PhD diss., University of Ghana, 2019.

Phillips R, Horsfield C, Mangan J, Laing K, Etuaful S, Awuah P, Nyarko K, Osei-Sarpong F, Butcher P, Lucas S, Wansbrough-Jones M. Cytokine mRNA expression in Mycobacteriam ulcerans-infected human skin and correlation with local inflammatory response. Infection and immunity 2006; 74(5): 2917-24. https://doi.org/10.1128/IAI.74.5.2917-2924.2006

Yount JS, Gitlin L, Moran TM, López CB. MDA5 participates in the detection of paramyxovirus infection and is essential for the early activation of dendritic cells in response to Sendai Virus defective interfering particles. The Journal of Immunology 2008; 180(7): 4910-8. https://doi.org/10.4049/jimmunol.180.7.4910

Coutanceau E, Decalf J, Martino A, Babon A, Winter N, Cole ST, Albert ML, Demangel C. Selective suppression of dendritic cell functions by Mycobacterium ulcerans toxin mycolactone. The Journal of experimental medicine 2007; 204(6): 1395-403. https://doi.org/10.1084/jem.20070234

Hall B, Simmonds R. Pleiotropic molecular effects of the Mycobacterium ulcerans virulence factor mycolactone underlying the cell death and immunosuppression seen in Buruli ulcer.

Houngbédji MG, Boissinot M, Bergeron GM, Frenette J. Subcutaneous injection of Mycobacterium ulcerans causes necrosis, chronic inflammatory response and fibrosis in skeletal muscle. Microbes and infection 2008; 10(12-13): 1236-43. https://doi.org/10.1016/j.micinf.2008.07.041

Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Frontiers in immunology 2014; 5: 491. https://doi.org/10.3389/fimmu.2014.00491

Buckwalter MR, Albert ML. Orchestration of the immune response by dendritic cells. Current Biology 2009; 19(9): R355-61. https://doi.org/10.1016/j.cub.2009.03.012

Tischler AD, McKinney JD. Contrasting persistence strategies in Salmonella and Mycobacterium. Current opinion in microbiology 2010; 13(1): 93-9. https://doi.org/10.1016/j.mib.2009.12.007

Walker AK, Dantzer R, Kelley KW. Mood disorders and immunity. In Neural-Immune Interactions in Brain Function and Alcohol Related Disorders 2013; (pp. 167-209). Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4729-0_6

Verburg-van Kemenade BL, Cohen N, Chadzinska M. Neuroendocrine-immune interaction: Evolutionarily conserved mechanisms that maintain allostasis in an ever-changing environment. Developmental & Comparative Immunology 2017; 66: 2-3. https://doi.org/10.1016/j.dci.2016.05.015

Fraga AG, Cruz A, Martins TG, Torrado E, Saraiva M, Pereira DR, Meyers WM, Portaels F, Silva MT, Castro AG, Pedrosa J. Mycobacterium ulcerans triggers T-cell immunity followed by local and regional but not systemic immunosuppression. Infection and immunity 2011; 79(1): 421-30. https://doi.org/10.1128/IAI.00820-10

El-Aouar Filho RA, Nicolas A, De Paula Castro TL, Deplanche M, De Carvalho Azevedo VA, Goossens PL, Taieb F, Lina G, Le Loir Y, Berkova N. Heterogeneous family of cyclomodulins: smart weapons that allow bacteria to hijack the eukaryotic cell cycle and promote infections. Frontiers in cellular and infection microbiology 2017; 7: 208. https://doi.org/10.3389/fcimb.2017.00208

Lagrue K, Carisey A, Oszmiana A, Kennedy PR, Williamson DJ, Cartwright A, Barthen C, Davis DM. The central role of the cytoskeleton in mechanisms and functions of the NK cell immune synapse. Immunological reviews 2013; 256(1): 203-21. https://doi.org/10.1111/imr.12107

Aspenström P. Roles of F-BAR/PCH proteins in the regulation of membrane dynamics and actin reorganization. International review of cell and molecular biology 2008; 272: 1-31. https://doi.org/10.1016/S1937-6448(08)01601-8

Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signalling regulators. Nature reviews Molecular cell biology 2003; 4(1): 33-45. https://doi.org/10.1038/nrm1004

Ruf MT, Sopoh GE, Brun LV, Dossou AD, Barogui YT, Johnson RC, Pluschke G. Histopathological changes and clinical responses of Buruli ulcer plaque lesions during chemotherapy: a role for surgical removal of necrotic tissue?. PLoS Negl Trop Dis 2011; 5(9): e1334. https://doi.org/10.1371/journal.pntd.0001334

Andreoli A, Ruf MT, Sopoh GE, Schmid P, Pluschke G. Immunohistochemical monitoring of wound healing in antibiotic treated Buruli ulcer patients. PLoS Negl Trop Dis 2014; 8(4): e2809. https://doi.org/10.1371/journal.pntd.0002809

Dobos KM, Quinn FD, Ashford DA, Horsburgh CR, King CH. Emergence of a unique group of necrotizing mycobacterial diseases. Emerging infectious diseases 1999; 5(3): 367. https://doi.org/10.3201/eid0503.990307

Silva-Gomes R, Marcq E, Trigo G, Goncalves CM, Longatto-Filho A, Castro AG, Pedrosa J, Fraga AG. Spontaneous healing of Mycobacterium ulcerans lesions in the guinea pig model. PLoS neglected tropical diseases 2015; 9(12): e0004265. https://doi.org/10.1371/journal.pntd.0004265

Bolz M, Ruggli N, Ruf MT, Ricklin ME, Zimmer G, Pluschke G. Experimental infection of the pig with Mycobacterium ulcerans: a novel model for studying the pathogenesis of Buruli ulcer disease. PLoS Negl Trop Dis 2014; 8(7): e2968. https://doi.org/10.1371/journal.pntd.0002968

Ruf MT, Schütte D, Chauffour A, Jarlier V, Ji B, Pluschke G. Chemotherapy-associated changes of histopathological features of Mycobacterium ulcerans lesions in a Buruli ulcer mouse model. Antimicrobial agents and chemotherapy 2012; 56(2): 687-96. https://doi.org/10.1128/AAC.05543-11

Gottrup F, Karlsmark T. Leg ulcers: uncommon presentations. Clinics in dermatology 2005; 23(6): 601-11. https://doi.org/10.1016/j.clindermatol.2005.01.018

Ogbechi J, Ruf MT, Hall BS, Bodman-Smith K, Vogel M, Wu HL, Stainer A, Esmon CT, Ahnström J, Pluschke G, Simmonds RE. Mycolactone-dependent depletion of endothelial cell thrombomodulin is strongly associated with fibrin deposition in Buruli ulcer lesions. PLoS Pathog 2015; 11(7): e1005011. https://doi.org/10.1371/journal.ppat.1005011

Gama JB, Ohlmeier S, Martins TG, Fraga AG, Sampaio-Marques B. Proteomic Analysis of the Action of the Mycobacterium ulcerans Toxin.

Stamm LM. Mycobacterium marinum actin-based motility. University of California, San Francisco; 2005.

Arumugham VB, Baldari CT. cAMP: a multifaceted modulator of immune synapse assembly and T cell activation. Journal of Leukocyte Biology 2017; 101(6): 1301-16. https://doi.org/10.1189/jlb.2RU1116-474R

Chánez-Paredes S, Montoya-García A, Schnoor M. Cellular and pathophysiological consequences of Arp2/3 complex inhibition: role of inhibitory proteins and pharmacological compounds. Cellular and Molecular Life Sciences 2019: 1-3. https://doi.org/10.1007/s00018-019-03128-y

Kanellos G, Frame MC. Cellular functions of the ADF/cofilin family at a glance. Journal of cell science 2016; 129(17): 3211-8. https://doi.org/10.1242/jcs.187849

Iwasa JH. Insights into the regulation of leading edge actin networks in vivo (Doctoral dissertation, University of California, San Francisco, 2006).

Gama JB, Ohlmeier S, Martins TG, Fraga AG, Sampaio-Marques B, Carvalho MA, Proença F, Silva MT, Pedrosa J, Ludovico P. Proteomic analysis of the action of the Mycobacterium ulcerans toxin mycolactone: targeting host cells cytoskeleton and collagen. PLoS Negl Trop Dis 2014; 8(8): e3066. https://doi.org/10.1371/journal.pntd.0003066

Parker AL, Kavallaris M, McCarroll JA. Microtubules and their role in cellular stress in cancer. Frontiers in oncology 2014; 4: 153. https://doi.org/10.3389/fonc.2014.00153

Wall IB, Moseley R, Baird DM, Kipling D, Giles P, Laffafian I, Price PE, Thomas DW, Stephens P. Fibroblast dysfunction is a key factor in the non-healing of chronic venous leg ulcers. Journal of Investigative Dermatology 2008; 128(10): 2526-40. https://doi.org/10.1038/jid.2008.114

Banan A, Zhang Y, Losurdo J, Keshavarzian A. Carbonylation and disassembly of the F-actin cytoskeleton in oxidant induced barrier dysfunction and its prevention by epidermal growth factor and transforming growth factor α in a human colonic cell line. Gut 2000; 46(6): 830-7. https://doi.org/10.1136/gut.46.6.830

Keshavarzian A, Banan A, Farhadi A, Komanduri S, Mutlu E, Zhang Y, Fields JZ. Increases in free radicals and cytoskeletal protein oxidation and nitration in the colon of patients with inflammatory bowel disease. Gut 2003; 52(5): 720-8. https://doi.org/10.1136/gut.52.5.720

Leigh IM, Purkis PE, Navsaria HA, Phillips TJ. Treatment of chronic venous ulcers with sheets of cultured allogenic keratinocytes. British Journal of Dermatology 1987; 117(5): 591-7. https://doi.org/10.1111/j.1365-2133.1987.tb07491.x

Romano M, Huygen K. DNA vaccines against mycobacterial diseases. Expert review of vaccines 2009; 8(9): 1237-50. https://doi.org/10.1586/erv.09.87

Bechtle M, Chen S, Efferth T. Neglected diseases caused by bacterial infections. Current medicinal chemistry 2010; 17(1): 42-60. https://doi.org/10.2174/092986710789957814

Schütte D. Approaches to improve treatment and early diagnosis of Buruli ulcer. the role of local and systemic immune responses (Doctoral dissertation, University_of_Basel, 2009).

Lysheden AS, Nowinski D, Gardner H, Rubin K, Gerdin B, Ivarsson M. Analysis of gene expression in fibroblasts in response to keratinocyte-derived factors in vitro: potential implications for the wound healing process. Journal of investigative dermatology 2004; 122(1): 216-21. https://doi.org/10.1046/j.0022-202X.2003.22112.x

Gao H, Peng C, Liang B, Shahbaz M, Liu S, Wang B, Sun Q, Niu Z, Niu W, Liu E, Wang J. β6 integrin induces the expression of metalloproteinase-3 and metalloproteinase-9 in colon cancer cells via ERK-ETS1 pathway. Cancer letters 2014; 354(2): 427-37. https://doi.org/10.1016/j.canlet.2014.08.017

Chang SH, Chang HC, Hung WC. Transcriptional repression of tissue inhibitor of metalloproteinase-3 by Epstein-Barr virus latent membrane protein 1 enhances invasiveness of nasopharyngeal carcinoma cells. Oral oncology 2008; 44(9): 891-7. https://doi.org/10.1016/j.oraloncology.2007.11.005

Sang QX, Jin Y, Newcomer RG, Monroe SC, Fang X, Hurst DR, Lee S, Cao Q, Schwartz MA. Matrix metalloproteinase inhibitors as prospective agents for the prevention and treatment of cardiovascular and neoplastic diseases. Current topics in medicinal chemistry 2006; 6(4): 289-316. https://doi.org/10.2174/156802606776287045

Ozeki N, Kawai R, Hase N, Hiyama T, Yamaguchi H, Kondo A, Nakata K, Mogi M. α2 integrin, extracellular matrix metalloproteinase inducer, and matrix metalloproteinase-3 act sequentially to induce differentiation of mouse embryonic stem cells into odontoblast-like cells. Experimental cell research 2015; 331(1): 21-37. https://doi.org/10.1016/j.yexcr.2014.08.004

Gehringer M, Altmann KH. The chemistry and biology of mycolactones. Beilstein Journal of Organic Chemistry 2017; 13(1): 1596-660. https://doi.org/10.3762/bjoc.13.159

Ito K, Bassford Jr PJ, Beckwith J. Protein localization in E. coli: is there a common step in the secretion of periplasmic and outer-membrane proteins? Cell 1981; 24(3): 707-17. https://doi.org/10.1016/0092-8674(81)90097-0

Johnson AE, van Waes MA. The translocon: a dynamic gateway at the ER membrane. Annual review of cell and developmental biology 1999; 15(1): 799-842. https://doi.org/10.1146/annurev.cellbio.15.1.799

Bole DG, Hendershot LM, Kearney JF. Posttranslational association of immunoglobulin heavy chain binding protein with nascent heavy chains in nonsecreting and secreting hybridomas. The Journal of cell biology 1986; 102(5):

-66. https://doi.org/10.1083/jcb.102.5.1558

Lang S, Nguyen D, Pfeffer S, Förster F, Helms V, Zimmermann R. Functions and Mechanisms of the Human Ribosome-Translocon Complex. In Macromolecular Protein Complexes II: Structure and Function 2019; (pp. 83-141). Springer, Cham. https://doi.org/10.1007/978-3-030-28151-9_4

Baron L, Paatero AO, Morel JD, Impens F, Guenin-Macé L, Saint-Auret S, Blanchard N, Dillmann R, Niang F, Pellegrini S, Taunton J. Mycolactone subverts immunity by selectively blocking the Sec61 transloconImmunity lost in translocation. The Journal of experimental medicine 20162; 213(13): 2885-96. https://doi.org/10.1084/jem.20160662

Römisch K. A case for Sec61 channel involvement in ERAD. Trends in biochemical sciences 2017; 42(3): 171-9. https://doi.org/10.1016/j.tibs.2016.10.005

Kaiser ML, Römisch K. Proteasome 19S RP binding to the Sec61 channel plays a key role in ERAD. PLoS One 2015; 10(2): e0117260. https://doi.org/10.1371/journal.pone.0117260

Ng W, Sergeyenko T, Zeng N, Brown JD, Römisch K. Characterization of the proteasome interaction with the Sec61 channel in the endoplasmic reticulum. Journal of cell science 2007; 120(4): 682-91. https://doi.org/10.1242/jcs.03351

Guenin-Macé L, Oldenburg R, Chrétien F, Demangel C. Pathogenesis of skin ulcers: lessons from the Mycobacterium ulcerans and Leishmania spp. pathogens. Cellular and molecular life sciences 2014; 71(13): 2443-50. https://doi.org/10.1007/s00018-014-1561-z

Walsh DS, Meyers WM, Portaels F, Lane JE, Mongkolsirichaikul D, Hussem K, Gosi P, Myint KS. High rates of apoptosis in human Mycobacterium ulcerans culture-positive Buruli ulcer skin lesions. The American journal of tropical medicine and hygiene 2005; 73(2): 410-5. https://doi.org/10.4269/ajtmh.2005.73.410

Johnson PD, Stinear T, Pamela LC, Pluschke G, Merritt RW, Portaels F, Huygen K, Hayman JA, Asiedu K. Buruli ulcer (M. ulcerans infection): new insights, new hope for disease control. PLoS Med 2005; 2(4): e108. https://doi.org/10.1371/journal.pmed.0020108

Trigo G, Martins TG, Fraga AG, Longatto-Filho A, Castro AG, Azeredo J, Pedrosa J. Phage therapy is effective against infection by Mycobacterium ulcerans in a murine footpad model. PLoS Negl Trop Dis 2013; 7(4): e2183. https://doi.org/10.1371/journal.pntd.0002183

Fraga AG, Trigo G, Murthy RK, Akhtar S, Hebbur M, Pacheco AR, Dominguez J, Silva-Gomes R, Gonçalves CM, Oliveira H, Castro AG. Antimicrobial activity of Mycobacteriophage D29 Lysin B during Mycobacterium ulcerans infection. PLoS neglected tropical diseases 2019; 13(8): e0007113. https://doi.org/10.1371/journal.pntd.0007113

Azimi T, Mosadegh M, Nasiri MJ, Sabour S, Karimaei S, Nasser A. Phage therapy as a renewed therapeutic approach to mycobacterial infections: a comprehensive review. Infection and Drug Resistance 2019; 12: 2943. https://doi.org/10.2147/IDR.S218638

Alisky J, Iczkowski K, Rapoport A, Troitsky N. Bacteriophages show promise as antimicrobial agents. Journal of Infection 1998; 36(1): 5-15. https://doi.org/10.1016/S0163-4453(98)92874-2

Malik DJ, Sokolov IJ, Vinner GK, Mancuso F, Cinquerrui S, Vladisavljevic GT, Clokie MR, Garton NJ, Stapley AG, Kirpichnikova A. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Advances in colloid and interface science 2017; 249: 100-33. https://doi.org/10.1016/j.cis.2017.05.014

Kaźmierczak Z, Górski A, Dąbrowska K. Facing antibiotic resistance: Staphylococcus aureus phages as a medical tool. Viruses 2014; 6(7): 2551-70. https://doi.org/10.3390/v6072551

Orlando PL. Pressure ulcer management in the geriatric patient. Annals of Pharmacotherapy 1998; 32(11): 1221-7. https://doi.org/10.1345/aph.16482

Spencer D, Lapteva N, inventors; Baylor College of Medicine, assignee. Methods and compositions for generating an immune response by inducing cd40 and pattern recognition receptors and adaptors thereof. United States patent application US 15/857,265 2018.

Barry JS, Burge JA, Byles DB, Morgan MS, Bryant AE, Bayer CR, Huntington JD, Stevens DL, Fry L, Powles AV, Corcoran S. Skin and soft tissue infections. Curr Opin Infect Dis 2006; 19: 132-8.

Schütte D, Pluschke G. Immunosuppression and treatment-associated inflammatory response in patients with Mycobacterium ulcerans infection (Buruli ulcer). Expert opinion on biological therapy 2009; 9(2): 187-200. https://doi.org/10.1517/14712590802631854

Torrado E, Adusumilli S, Fraga AG, Small PL, Castro AG, Pedrosa J. Mycolactone-mediated inhibition of tumor necrosis factor production by macrophages infected with Mycobacterium ulcerans has implications for the control of infection. Infection and immunity 2007; 75(8): 3979-88. https://doi.org/10.1128/IAI.00290-07

Liu YC, Zou XB, Chai YF, Yao YM. Macrophage polarization in inflammatory diseases. International journal of biological sciences 2014; 10(5): 520. https://doi.org/10.7150/ijbs.8879

Chauty A, Ardant MF, Adeye A, Euverte H, Guédénon A, Johnson C, Aubry J, Nuermberger E, Grosset J. Promising clinical efficacy of streptomycin-rifampin combination for treatment of buruli ulcer (Mycobacterium ulcerans disease). Antimicrobial agents and chemotherapy 2007; 51(11): 4029-35. https://doi.org/10.1128/AAC.00175-07

Meyers WM, Shelly WM, Connor DH. Heat treatment of Mycobacterium ulcerans infections without surgical excision. The American journal of tropical medicine and hygiene 1974; 23(5): 924-9. https://doi.org/10.4269/ajtmh.1974.23.924

Willenborg S, Eming SA. Macrophages–sensors and effectors coordinating skin damage and repair. JDDG: Journal der Deutschen Dermatologischen Gesellschaft 2014; 12(3): 214-21. https://doi.org/10.1111/ddg.12290

Monack DM, Mueller A, Falkow S. Persistent bacterial infections: the interface of the pathogen and the host immune system. Nature Reviews Microbiology 2004; 2(9): 747-65. https://doi.org/10.1038/nrmicro955

Pacurari M, Kafoury R, Tchounwou PB, Ndebele K. The renin-angiotensin-aldosterone system in vascular inflammation and remodeling. International journal of inflammation 2014; 2014. https://doi.org/10.1155/2014/689360

Iwai M, Horiuchi M. Devil and angel in the renin–angiotensin system: ACE–angiotensin II–AT 1 receptor axis vs. ACE2–angiotensin-(1–7)–Mas receptor axis. Hypertension Research 2009; 32(7): 533-6. https://doi.org/10.1038/hr.2009.74

Qi HY, Shelhamer JH. Toll-like receptor 4 signaling regulates cytosolic phospholipase A2 activation and lipid generation in lipopolysaccharide-stimulated macrophages. Journal of Biological Chemistry 2005; 280(47): 38969-75. https://doi.org/10.1074/jbc.M509352200

Scharfstein J, Ramos PI, Barral-Netto M. G protein-coupled kinin receptors and immunity against pathogens. InAdvances in immunology 2017; (Vol. 136, pp. 29-84). Academic Press https://doi.org/10.1016/bs.ai.2017.05.007

Shi L, Kishore R, McMullen MR, Nagy LE. Lipopolysaccharide stimulation of ERK1/2 increases TNF-α production via Egr-1. American Journal of Physiology-Cell Physiology 2002; 282(6): C1205-11. https://doi.org/10.1152/ajpcell.00511.2001

Ogbechi J. Investigating the mechanism behind the tissue necrosis in mycobacterium ulcerans infection (Doctoral dissertation, University of Surrey).

Downloads

Published

2020-08-10

Issue

Section

Articles