Mechanisms Underlying Induced Pseudo-Scleroderma among Patients with Phenylketonuria Metabolic Disorder

Authors

  • Kwame Kumi Asare Department of Biomedical Sciences, School of Allied health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
  • Justice Afrifa Department of Medical Laboratory Science, University of Cape Coast, Cape Coast, Ghana
  • Yeboah Kwaku Opoku Department of Biology Education, Faculty of Science Education, University of Education, Winneba, Ghana

DOI:

https://doi.org/10.12970/2310-998X.2021.09.01

Keywords:

 Pseudo-sclerodermas, Phenylalanine metabolic disorder, phenylketonuria (PKU), Dermatological disorders, Phenylalanine hydrolase (PAH), Dihydrobiopterin reductase (DHPR), Current therapeutic advance, Neurological disorder, Melanocytogenesis.

Abstract

Pseudo-sclerodermas are neglected dermatological conditions associated with metabolic dysfunction of phenylalanine. Phenylalanine metabolic disorder is an autosomal genetic mutation in phenylalanine hydrolase (PAH). This mutation results in phenylalanine metabolism deficiency and subsequent accumulation of phenylalanine and phenylpyruvic acid in the blood and the cutaneous tissues. The accumulation induces several systemic complications including neurological and dermatological disorders. This report focuses on the mechanisms underlying the induction of the dermatological disorders, current advances in the treatment of phenylketonuria (PKU), and the prospective research areas of interest for the management of dermatological abnormalities in PKU. This metabolic disorder induces chronic bleeding, cellulitis, dermatitis, eczema, psoriasis and parapsoriasis, benign neoplasms of the skin, and melanomas of the skin causing dysregulation of immune cells. The infiltration of CD4+ T-cells and macrophages stimulates IL-4, IL-10, IL-13, and IL-17 leading to the destruction of cutaneous tissues. The insufficiencies of phenylalanine hydroxylase (PAH) and dihydrobiopterin reductase (DHPR) in PKU leads to the accumulation of phenylalanine and phenylpyruvic acid in the corium of the skin. The neurological and psychosocial manifestations of PKU have attracted current advances in therapeutic management targeting the correction of the enzymatic defects in the metabolic pathways or immunoregulation underlying inflammatory conditions to improve the quality of life in PKU patients. However, there is a knowledge gap on the effectiveness of the current therapeutic advance to restore variations in dermatological abnormalities in PKU. Further studies on comorbidities, etiologies, environmental exposures, psychosocial and social effects, and the effects of new therapeutic strategies would provide an insight into the management of pseudo-sclerodermas in PKU disorders.

References

Esfahani MS, Vallian S. A comprehensive study of phenylalanine hydroxylase gene mutations in the Iranian phenylketonuria patients. European journal of medical genetics 2019; 62(9): 103559. https://doi.org/10.1016/j.ejmg.2018.10.011

Blau N, van Spronsen FJ. Disorders of phenylalanine and tetrahydrobiopterin metabolism. InPhysician's Guide to the Diagnosis, Treatment, and Follow-Up of Inherited Metabolic Diseases 2014 (pp. 3-21). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40337-8_1

Camp KM, Parisi MA, Acosta PB, Berry GT, Bilder DA, Blau N, Bodamer OA, Brosco JP, Brown CS, Burlina AB, Burton BK. Phenylketonuria Scientific Review Conference: state of the science and future research needs. Molecular genetics and metabolism 2014; 112(2): 87-122. https://doi.org/10.1016/j.ymgme.2014.02.013

Abbas O, Bhawan J. Sclerosing disorders of the skin: an overview with a focus on histopathological features. The American Journal of Dermatopathology 2014; 36(10): 763-80. https://doi.org/10.1097/DAD.0000000000000145

Part DE. Online Section. Dermatology 2016: 30.

Barragán-Martínez C, Speck-Hernández CA, Montoya-Ortiz G, Mantilla RD, Anaya JM, Rojas-Villarraga A. Organic solvents as risk factor for autoimmune diseases: a systematic review and meta-analysis. PloS one 2012; 7(12): e51506. https://doi.org/10.1371/journal.pone.0051506

Miteva M, Romanelli P, Kirsner RS. Lipodermatosclerosis. Dermatologic therapy 2010; 23(4): 375-88. https://doi.org/10.1111/j.1529-8019.2010.01338.x

Knobler R, Moinzadeh P, Hunzelmann N, Kreuter A, Cozzio A, Mouthon L, Cutolo M, Rongioletti F, Denton CP, Rudnicka L, Frasin LA. European Dermatology Forum S1‐guideline on the diagnosis and treatment of sclerosing diseases of the skin, Part 1: localized scleroderma, systemic sclerosis and overlap syndromes. Journal of the European Academy of Dermatology and Venereology 2017; 31(9): 1401-24. https://doi.org/10.1111/jdv.14458

Orteu CH, Ong VH, Denton CP. Scleroderma mimics–clinical features and management. Best Practice & Research Clinical Rheumatology 2020; 34(1): 101489. https://doi.org/10.1016/j.berh.2020.101489

Gilbert-Barness E, Barness LA, Farrell PM. Disorders of Amino Acid Metabolism. Metabolic Diseases: Foundations of Clinical Management, Genetics, and Pathology 2017: 47.

Kamboj MK, Tareen RS. Inborn errors of metabolism, psychiatry and dermatology. International Journal of Child Health and Human Development 2015; 8(1): 95.

Lichter-Konecki U. Neurotransmission and neurotoxicity (phenylketonuria and dopamine). Inborn Errors of Metabolism: From Neonatal Screening to Metabolic Pathways 2014; (64): 241. https://doi.org/10.1093/med/9780199797585.003.0011

Smith I, Lee P. The hyperphenylalaninaemias. InInborn metabolic diseases 2000 (pp. 170-184). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04285-4_14

Van der Knaap MS, Valk J. Magnetic resonance of myelination and myelin disorders. Springer Science & Business Media; 2005. https://doi.org/10.1007/3-540-27660-2

Calza L, Fernández M, Giardino L. Role of the thyroid system in myelination and neural connectivity. Comprehensive Physiology 2011; 5(3): 1405-21. https://doi.org/10.1002/cphy.c140035

Gawkrodger D, Ardern-Jones MR. Dermatology e-book: an illustrated colour text. Elsevier Health Sciences; 2016.

Mitchell AE, Morawska A, Kirby G, McGill J, Coman D, Inwood A. Triple P for Parents of Children with Phenylketonuria: A Nonrandomized Trial. Journal of Pediatric Psychology 2020. https://doi.org/10.1093/jpepsy/jsaa100

Havlíček J, Fialová J, Roberts SC. Individual variation in body odor. InSpringer handbook of odor 2017 (pp. 125-126). Springer, Cham. https://doi.org/10.1007/978-3-319-26932-0_50

Borghi M, Fernie AR, Schiestl FP, Bouwmeester HJ. The sexual advantage of looking, smelling, and tasting good: the metabolic network that produces signals for pollinators. Trends in Plant Science 2017; 22(4): 338-50. https://doi.org/10.1016/j.tplants.2016.12.009

Lerner AB. Metabolism of phenylalanine and tyrosine. Advances in Enzymology 2009; 14: 73-128. https://doi.org/10.1002/9780470122594.ch3

Wu J, Li P, Chen Y, Yang XH, Lei MY, Zhao L. Hypereosinophilia, mastectomy, and nephrotic syndrome in a male patient: A case report. World journal of clinical cases 2019; 7(19): 3145. https://doi.org/10.12998/wjcc.v7.i19.3145

Ahmad SF, Ansari MA, Nadeem A, Bakheet SA, Al-Ayadhi LY, Attia SM. Upregulation of peripheral CXC and CC chemokine receptor expression on CD4+ T cells is associated with immune dysregulation in children with autism. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2018; 81: 211-20. https://doi.org/10.1016/j.pnpbp.2017.10.001

Yang X, Qi Q, Pan Y, Zhou Q, Wu Y, Zhuang J, Xu J, Pan M, Han S. Single-cell analysis reveals characterization of infiltrating T cells in moderately differentiated colorectal cancer. Frontiers in Immunology 2021; 11: 3678. https://doi.org/10.3389/fimmu.2020.620196

Mori Y, Kahari VM, Varga J. Scleroderma-like cutaneous syndromes. Current rheumatology reports 2002; 4(2): 113-22. https://doi.org/10.1007/s11926-002-0006-0

Zuber JP, Spertini F. Immunological basis of systemic sclerosis. Rheumatology 2006; 45(suppl_3): iii23-5. https://doi.org/10.1093/rheumatology/kel285

Dayer JM, Williamson SJ, Croft AP, Buckley CD, Chizzolini C. Matrix metalloproteinases (MMPs) and cytokines in rheumatology. Matrix Metalloproteinases In Health And Disease: Sculpting The Human Body 2017; 123. https://doi.org/10.1142/9789813207554_0006

Teske NM, Jacobe HT. Morphea (Localized Scleroderma). InScleroderma 2017 (pp. 91-113). Springer, Cham. https://doi.org/10.1007/978-3-319-31407-5_8

Orteu CH. Morphoea (Localized Scleroderma). Rook's Textbook of Dermatology, Ninth Edition 2016; 1-37.

Roato I, Porta F, Mussa A, D'Amico L, Fiore L, Garelli D, Spada M, Ferracini R. Bone impairment in phenylketonuria is characterized by circulating osteoclast precursors and activated T cell increase. PLoS One 2010; 5(11): e14167. https://doi.org/10.1371/journal.pone.0014167

Pillaiyar T, Manickam M, Namasivayam V. Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors. Journal of enzyme inhibition and medicinal chemistry 2017; 32(1): 403-25. https://doi.org/10.1080/14756366.2016.1256882

Videira IF, Moura DF, Magina S. Mechanisms regulating melanogenesis. Anais brasileiros de dermatologia 2013; 88(1): 76-83. https://doi.org/10.1590/S0365-05962013000100009

Ortonne JP, Bissett DL. Latest insights into skin hyperpigmentation. InJournal of Investigative Dermatology Symposium Proceedings 2008; (Vol. 13, No. 1, pp. 10-14). Elsevier. https://doi.org/10.1038/jidsymp.2008.7

Langan EA, Nie Z, Rhodes LE. Melanotropic peptides: more than just ‘Barbie drugs’ and ‘sun‐tan jabs’?. British Journal of Dermatology 2010; 163(3): 451-5. https://doi.org/10.1111/j.1365-2133.2010.09891.x

Schallreuter KU, Kothari S, Chavan B, Spencer JD. Regulation of melanogenesis–controversies and new concepts. Experimental dermatology 2008; 17(5): 395-404. https://doi.org/10.1111/j.1600-0625.2007.00675.x

Spencer JD, Chavan B, Marles LK, Kauser S, Rokos H, Schallreuter KU. A novel mechanism in control of human pigmentation by β-melanocyte-stimulating hormone and 7-tetrahydrobiopterin. Journal of endocrinology 2005; 187(2): 293-302. https://doi.org/10.1677/joe.1.06275

Schallreuter KU. INFLUENCE OF HYDROGEN PEROXIDE (HO). InChemistry and Biology of Pteridines and Folates: Proceedings of the 12th International Symposium on Pteridines and Folates, National Institutes of Health, Bethesda, Maryland, June 17–22, 2001 2012; (p. 309). Springer Science & Business Media.

García-Borrón JC, Sánchez MC. Biosynthesis of melanins. Melanins and Melanosomes: Biosynthesis, Structure, Physiological and Pathological Functions. John Wiley & Sons 2011. https://doi.org/10.1002/9783527636150.ch4

Kotb El-Sayed MI, El-Ghany A, Ahmed A, Mohamed RR. Neural and endocrinal pathobiochemistry of vitiligo: comparative study for a hypothesized mechanism. Frontiers in endocrinology 2018; 9: 197. https://doi.org/10.3389/fendo.2018.00197

Varjú C, Kumánovics G, Czirják L, Matucci-Cerinic M, Minier T. Sclerodermalike syndromes: Great imitators. Clinics in Dermatology 2020; 38(2): 235-49. https://doi.org/10.1016/j.clindermatol.2019.10.010

Inamadar AC, Palit A, editors. Systemic Sclerosis: An Illustrated Guide to Manifestation and Management in Asian Skin. CRC Press; 2019.

Regazzetti C, De Donatis GM, Ghorbel HH, Cardot-Leccia N, Ambrosetti D, Bahadoran P, Chignon-Sicard B, Lacour JP, Ballotti R, Mahns A, Passeron T. Endothelial cells promote pigmentation through endothelin receptor B activation. Journal of Investigative Dermatology 2015; 135(12): 3096-104. https://doi.org/10.1038/jid.2015.332

Scriver CR. Whatever happened to PKU?. Clinical biochemistry 1995; 28(2): 137-44. https://doi.org/10.1016/0009-9120(94)00076-8

Heintz C. Molecular and metabolic bases of tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency (Doctoral dissertation, University of Zurich).

Parthasarathy A, Cross PJ, Dobson RC, Adams LE, Savka MA, Hudson AO. A three-ring circus: metabolism of the three proteogenic aromatic amino acids and their role in the health of plants and animals. Frontiers in molecular biosciences 2018; 5: 29. https://doi.org/10.3389/fmolb.2018.00029

Van Spronsen FJ. Phenylketonuria: a 21 st century perspective. Nature Reviews Endocrinology 2010; 6(9): 509. https://doi.org/10.1038/nrendo.2010.125

Van Karnebeek CD, Shevell M, Zschocke J, Moeschler JB, Stockler S. The metabolic evaluation of the child with an intellectual developmental disorder: diagnostic algorithm for identification of treatable causes and new digital resource. Molecular genetics and metabolism 2014; 111(4): 428-38. https://doi.org/10.1016/j.ymgme.2014.01.011

Bahadori A. ECZEMATOUS DERMATITIS. Primary Care E-Book: A Collaborative Practice 2019; 25: 273.

Ogawa T, Sotto MN, Hoang MP. Granulomatous dermatitis and others. InHospital-Based Dermatopathology 2020 (pp. 137-198). Springer, Cham. https://doi.org/10.1007/978-3-030-35820-4_5

Petrashenko VO, Loboda AM, Kasian SM, Popov SV. Medical Genetics.

Manga P, Sheyn D, Yang F, Sarangarajan R, Boissy RE. A role for tyrosinase-related protein 1 in 4-tert-butylphenol-induced toxicity in melanocytes: Implications for vitiligo. The American journal of pathology 2006; 169(5): 1652-62. https://doi.org/10.2353/ajpath.2006.050769

Glassman SJ. Vitiligo, reactive oxygen species and T-cells. Clinical Science 2011; 120(3): 99-120. https://doi.org/10.1042/CS20090603

Feillet F, van Spronsen FJ, MacDonald A, Trefz FK, Demirkol M, Giovannini M, Bélanger-Quintana A, Blau N. Challenges and pitfalls in the management of phenylketonuria. Pediatrics 2010; 126(2): 333-41. https://doi.org/10.1542/peds.2009-3584

Rocha JC, van Spronsen FJ, Almeida MF, Soares G, Quelhas D, Ramos E, Guimarães JT, Borges N. Dietary treatment in phenylketonuria does not lead to increased risk of obesity or metabolic syndrome. Molecular genetics and metabolism 2012; 107(4): 659-63. https://doi.org/10.1016/j.ymgme.2012.10.006

Ashe K, Kelso W, Farrand S, Panetta J, Fazio T, De Jong G, Walterfang M. Psychiatric and cognitive aspects of phenylketonuria: The limitations of diet and promise of new treatments. Frontiers in psychiatry 2019; 10: 561. https://doi.org/10.3389/fpsyt.2019.00561

Grisch-Chan HM, Schwank G, Harding CO, Thöny B. State-of-the-art 2019 on gene therapy for phenylketonuria. Human gene therapy 2019; 30(10): 1274-83. https://doi.org/10.1089/hum.2019.111

Yagi H, Ogura T, Mizukami H, Urabe M, Hamada H, Yoshikawa H, Ozawa K, Kume A. Complete restoration of phenylalanine oxidation in phenylketonuria mouse by a self‐complementary adeno‐associated virus vector. The journal of gene medicine 2011; 13(2): 114-22. https://doi.org/10.1002/jgm.1543

Villiger L, Grisch-Chan HM, Lindsay H, Ringnalda F, Pogliano CB, Allegri G, Fingerhut R, Häberle J, Matos J, Robinson MD, Thöny B. Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nature medicine 2018; 24(10): 1519-25. https://doi.org/10.1038/s41591-018-0209-1

Lichter-Konecki U, Vockley J. Phenylketonuria: current treatments and future developments. Drugs 2019; 79(5): 495-500. https://doi.org/10.1007/s40265-019-01079-z

Blau N. Sapropterin dihydrochloride for the treatment of hyperphenylalaninemias. Expert opinion on drug metabolism & toxicology 2013; 9(9): 1207-18. https://doi.org/10.1517/17425255.2013.804064

Meghwanshi GK, Kaur N, Verma S, Dabi NK, Vashishtha A, Charan PD, Purohit P, Bhandari HS, Bhojak N, Kumar R. Enzymes for pharmaceutical and therapeutic applications. Biotechnology and applied biochemistry 2020; 67(4): 586-601. https://doi.org/10.1002/bab.1919

Certo M, Elkafrawy H, Pucino V, Cucchi D, Cheung KC, Mauro C. Endothelial cell and T‐cell crosstalk: Targeting metabolism as a therapeutic approach in chronic inflammation. British journal of pharmacology 2020. https://doi.org/10.1111/bph.15002

Hosseinzade A, Sadeghi O, Naghdipour Biregani A, Soukhtehzari S, Brandt GS, Esmaillzadeh A. Immunomodulatory effects of flavonoids: possible induction of T CD4+ regulatory cells through suppression of mTOR pathway signaling activity. Frontiers in immunology 2019; 10: 51. https://doi.org/10.3389/fimmu.2019.00051

Denton CP, Black CM. Systemic sclerosis in childhood. Harper's Textbook of Pediatric Dermatology 2019: 1183-94. https://doi.org/10.1002/9781119142812.ch100

Spithoven AW, Cacioppo S, Goossens L, Cacioppo JT. Genetic contributions to loneliness and their relevance to the evolutionary theory of loneliness. Perspectives on Psychological Science 2019; 14(3): 376-96. https://doi.org/10.1177/1745691618812684

Rao TS, Asha MR, Ramesh BN, Rao KJ. Understanding nutrition, depression and mental illnesses. Indian journal of psychiatry 2008; 50(2): 77. https://doi.org/10.4103/0019-5545.42391

Riera-Domingo C, Audigé A, Granja S, Cheng WC, Ho PC, Baltazar F, Stockmann C, Mazzone M. Immunity, hypoxia, and metabolism–the Ménage à Trois of cancer: implications for immunotherapy. Physiological reviews 2020; 100(1): 1-02. https://doi.org/10.1152/physrev.00018.2019

Rae ER, Maymone MB, Vashi NA. The Basics: Skin Types, Definitions, and Differentials. InThe Dermatology Handbook 2019 (pp. 1-33). Springer, Cham. https://doi.org/10.1007/978-3-030-15157-7_1

Ozkaya N, Rosenblum MK, Durham BH, Pichardo JD, Abdel-Wahab O, Hameed MR, Busam KJ, Travis WD, Diamond EL, Dogan A. The histopathology of Erdheim–Chester disease: a comprehensive review of a molecularly characterized cohort. Modern Pathology 2018; 31(4): 581-97. https://doi.org/10.1038/modpathol.2017.160

Howlader MH. Microcirculation of chronic venous disease: Role of leucocyte-endothelial activation and effects of pharmacological intervention. University of London, University College London (United Kingdom); 2004.

Simon E, Schwarz M, Roos J, Dragano N, Geraedts M, Siegrist J, Kamp G, Wendel U. Evaluation of quality of life and description of the sociodemographic state in adolescent and young adult patients with phenylketonuria (PKU). Health and Quality of Life Outcomes 2008; 6(1): 1-7. https://doi.org/10.1186/1477-7525-6-25

Vicario M. Tyrosine hydroxylase and HSPB8 interact with the prion protein.

Downloads

Published

2021-02-11

Issue

Section

Articles