P-Wave Morphology, Amplitude, Duration and Dispersion in Atrial Arrhythmias

Osmar Antonio Centurión1,2*, Laura Beatriz García1, Alberto Marecos1, Judith Torales2, Karina Scavenius2, Luis Miño3 and Orlando Sequeira2

1Department of Health Science’s Investigation, Sanatorio Metropolitano, Fernando de la Mora, Paraguay
2Division of Cardiovascular Medicine, Clinic Hospital, Asunción National University-UNA, San Lorenzo, Paraguay

Abstract: The detailed analysis of the P-wave duration and dispersion by means of conventional electrocardiography with the 12 standard surface leads in the stratification of patients suffering from AF is a recognized universal approach. P-wave dispersion (PWD) has received increasing attention in the field of non-invasive electrophysiology studying atrial arrhythmias and has been examined in a broad range of clinical settings including cardiovascular and non-cardiovascular diseases. It is well accepted that, not only the P-wave duration, but also the P-wave morphology and dispersion have the potential to give information about the anatomical substrate predisposing to AF. Patients with diseased atrial myocardium with fibrotic changes may develop abnormal electrophysiological alterations. Therefore, these atrial anisotropic characteristics may play an important role in creating reentry circuits by causing inhomogeneous and discontinuous propagation of the impulse in the atrial tissue. The altered atrial myocardium may generate unidirectional block, conduction delay and reentrant atrial rhythms. The P-wave of the electrocardiogram may show alterations that can be associated with atrial arrhythmias and AF. PWD is considered a noninvasive electrocardiographic marker for atrial remodeling and predictor for AF. It has been shown that increased P-wave duration and PWD reflect prolongation of intra-atrial and inter-atrial conduction time. In patients prone to develop atrial arrhythmias and AF, PWD reflects prolonged, inhomogeneous and anisotropic distribution of connections between myocardial fibers resulting in discontinuous anisotropic propagation of sinus impulses and atrial conduction. PWD is considered as a sensitive and specific ECG marker and predictor of atrial arrhythmias and paroxysmal AF.

Keywords: P-wave duration and dispersion, Atrial arrhythmias, Atrial fibrillation.

INTRODUCTION

The study and quantitative measurements of the P-wave by means of conventional electrocardiography (ECG) with the 12 standard surface leads in the stratification of patients suffering from atrial fibrillation (AF) is a recognized universal approach. It has been known that increased P-wave duration and P-wave dispersion (PWD) reflect prolongation of intra-atrial, and inter-atrial conduction time, which are well-known electrophysiological characteristics in patients with atrial arrhythmias and especially paroxysmal AF [1-4]. P-wave duration and dispersion has received increasing attention in the field of non-invasive electrophysiology studying atrial arrhythmias and has been examined in a broad range of clinical settings including cardiovascular and non-cardiovascular diseases [5-7]. It is well accepted that, not only the P-wave duration, but also the P-wave morphology and dispersion have the potential to give information about the anatomical substrate predisposing to AF [8-11]. Patients with diseased atrial myocardium with fibrotic changes may develop abnormal electrophysiological alterations [12-17]. Connective tissue surrounding atrial myocytes represents sites where electrical coupling between adjacent cells is altered [18-20]. Therefore, these atrial anisotropic characteristics may play an important role in creating reentry circuits by causing inhomogeneous and discontinuous propagation of the impulse in the atrial tissue [20]. The altered atrial myocardium may generate unidirectional block, conduction delay and reentrant atrial rhythms. The P-wave of the electrocardiogram may show alterations that can be associated with atrial arrhythmias and AF. PWD is considered a noninvasive ECG marker for atrial remodeling and predictor for AF [8-11]. It has been shown that increased P-wave duration and PWD reflect prolongation of atrial conduction time inside the right atrium and between both atria, and the inhomogeneous and discontinuous atrial propagation of sinus impulses [7-12]. Therefore, it is the aim of this manuscript to analyze the relationship of the P-wave characteristics and dispersion and the development of atrial arrhythmias and atrial fibrillation.

DEFINITIONS AND MEASUREMENTS

PWD reflects disturbances of intra-atrial and inter-atrial conduction, and it is defined as the difference between the wider and the narrower P-wave duration recorded from the 12 ECG leads at a paper speed of
50 mm/s. The correct measurement of PWD is derived by subtracting the minimum P-wave duration from the maximum in any of the 12 standard surface ECG leads in supine position following 15 min of rest and room temperature and lighting kept constant [8, 9]. The onset of the P-wave is defined as the point of first detectable upward or downward slope from the isoelectric line for positive or negative waveforms, respectively. Return to the isoelectric line is considered as the end of the P-wave. PWD can be calculated by manual measurements with hand-held calipers or computerized methods. Manual measurement with hand-held calipers is performed by increasing the ECG rate to 50 mm/s and the voltage to 1 mV/cm, accompanied by the use of magnification [21]. The normal value of PWD was found to be 29 ± 9 ms, and values greater than 40 ms indicate the presence of heterogeneous electrical activity in different regions of the atrium that might cause AF to develop [8, 9].

P-Wave Duration

Normal value in adults is 60 to 110 ms. The P-wave duration progressively increases through the years. The proper manner to measure the P-wave duration on the electrocardiogram is as follows. The onset is defined as the point of first visible upward slope from baseline for positive waveforms, and as the point of first downward slope from baseline for negative waveforms. The return to baseline is considered as the end of the P-wave (Figure 1).

![Figure 1: The figure shows measurement of P wave duration on 12-lead surface electrocardiography on lead DI. The paper speed was set at 50 mm/sec and the ECG amplitude at 20 mm/mV. Reproduced with permission from Gudul NE, et al. Atrial conduction times and left atrial mechanical functions and their relation with diastolic function in prediabetic patients. Kor J Intern Med. 2016 doi.org/10.3904/kjim.2014.380.](image)

P-Wave Amplitude

Normal P-wave amplitude is between 5 mm or 0.05 mV to 2.5 mm 0.25 mV. In the precordial leads normal P-wave amplitude is always less than 1.5 mm. The maximal normal value is less than 2.5mm or 0.25 mV.

P-Wave Polarity

The normal P wave polarity is always positive in II, I, aVF and from V3 to V6. It is always negative in aVR and variable in III, aVL and V1eV2. The normal P-wave is typically biphasic in V1, with similar sizes of the positive and negative deflections. Normal P wave axis is considered between 0 and +75 by manually constructing the mean frontal plane electrical P-axis from standard limb leads [22].

P-Wave Morphology

The shape of a P-wave is usually smooth and rounded. It may be notched in the frontal plane in partial interatrial block. It may be broad, greater than 120 ms in left atrial enlargement. It may be bifid in lead II (P mitrale) in marked left atrial dilatation in mitral stenosis [23-26].

Platonov divided the P-wave morphology using orthogonal leads in three types [27]:

Type 1: Upright P-waves in all orthogonal leads which are commonly seen in healthy subjects below 50 years of age.

Type 2: Upright P-waves in leads X and Y, as well as, biphasic in lead Z. These changes are commonly seen in patients with paroxysmal AF, and left atrial enlargement. However, it may also be seen in healthy patients older than 50 years of age.

Type 3: Upright in X but biphasic in leads Y and Z which are seen in advanced, complete or third degree interatrial block, often associated with prolongation of P-wave duration over 120 ms. This P-wave morphology is uncommon in healthy subjects.

P-Wave Dispersion

P-wave dispersion is defined as the difference between the maximum and the minimum P-wave duration recorded from multiple different surfaces ECG leads (Figure 2). Maximum and minimum P-wave durations are calculated from the standard ECG during sinus rhythm. PWD is derived by subtracting the minimum P-wave duration from the maximum in any of the 12 ECG leads. It has been known that increased P-wave duration and PWD reflect prolongation of intra-atrial and inter-atrial conduction time and the
inhomogeneous atrial propagation of sinus impulses [3], which are well-known electrophysiological characteristics in patients with atrial arrhythmias and especially PAF.

There are interesting data pertaining PWD in AF electrical cardioversion. Boriani et al. [41] investigated the association of different PWD values and short-term vs late AF recurrence after electrical cardioversion. They reported significantly higher PWD values in patients with short-term AF recurrence. In addition, they demonstrated that values greater than 25 ms of PWD were associated with a higher short-term relapse rate. However, no significant relationship was present in the long-term in their study [41]. On the other hand, Perzanowski et al. [42] reported that a PWD value of 80 ms or greater was both a univariate and independent predictor for AF recurrence after cardioversion. In this context of electrical cardioversion, it is very interesting the finding by Ozdemir et al. [43] after electrical cardioversion of ventricular tachycardia. They identified 18 patients in whom an episode of AF was induced by urgent or elective cardioversion for a ventricular tachycardia. They observed that the patients whom developed AF had higher maximum P-wave duration and PWD values compared with a control group of patients without AF. They concluded that the patients with higher PWD values had a greater risk for development of AF after an electrical cardioversion of ventricular tachycardia [43]. These results are very interesting, and may have a clinical implication in patients with implantable cardioverter defibrillator. Because it may suggest that those patients with these cardiac devices that have higher PWD and maximum P-wave duration carry a greater risk for development of AF after an appropriate or inappropriate shock [43].

We have previously found that patients with a predisposition to develop AF have significantly higher incidence of atrial conduction defects, and abnormally prolonged and fractionated atrial endocardial electrograms [12-17]. We have reported that an abnormally prolonged and fractionated right atrial electrogram may reflect inhomogeneous local electrical
activity related to a delayed and non-uniform anisotropic conduction through diseased atrial muscle, and were closely related to the vulnerability of the atrial muscle in patients with paroxysmal AF [14-16]. Indeed, we demonstrated that the greater the extent of the compromised atrial muscle, the greater the likelihood that paroxysmal AF would develop [15]. Qualitative and quantitative analysis of atrial endocardial electrograms recorded during sinus rhythm should be an important analysis in evaluating local atrial electrophysiological abnormalities, and acquire particular relevance in the study of patients with paroxysmal AF (Figure 3). In the evaluation of patients with altered P wave morphology and dispersion in the electrocardiogram, it is very important to keep in mind that patients who have a great susceptibility to develop AF possess abnormally prolonged and fractionated atrial endocardial electrograms, a significantly longer P wave duration and dispersion, a significantly longer intra-atrial and inter-atrial conduction time of sinus impulses; and a significantly greater sinus node dysfunction and higher incidence of induction of sustained atrial fibrillation [12].

CONCLUSION

In conclusion, in patients prone to develop atrial arrhythmias and AF, PWD reflects prolonged, inhomogeneous and anisotropic distribution of connections between myocardial fibers resulting in discontinuous anisotropic propagation of sinus impulses, as well as, inhomogeneous and discontinuous atrial conduction. PWD is considered as a sensitive and specific ECG marker and predictor of atrial arrhythmias and paroxysmal AF.

REFERENCES


Figure 3: Atrial endocardial mapping sites. The upper part of the figure shows 12 endocardial mapping sites in the right atrium. The atrial endocardial electrograms were recorded in each patient from the anterior, lateral, posterior, and medial aspects of the high right atrium (a,b,c,d), mid right atrium (e,f,g,h), and low right atrium (i,j,k,l). SVC, superior vena cava; IVC, inferior vena cava; Ao, aorta; PA, pulmonary artery; LA, left atrium; RV, right ventricle; LV, left ventricle. The lower part of the figure shows two atrial endocardial electrograms to distinguish an abnormal atrial electrogram (A) with 10 fragmented deflections and 130 ms in duration, from a normal atrial electrogram (B) with two deflections and 80 ms in duration. Reprinted with permission from Centurión OA et al. Influence of advancing age on fractionated right atrial endocardial electrograms. Am J Cardiol 2005; 96: 239-242.


